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Experimental observations and linear stability analysis are used to quantitatively 
describe a purely elastic flow instability in the inertialess motion of a viscoelastic fluid 
confined between a rotating cone and a stationary circular disk. Beyond a critical value 
of the dimensionless rotation rate, or Deborah number, the spatially homogeneous 
azimuthal base flow that is stable in the limit of small Reynolds numbers and small 
cone angles becomes unstable with respect to non-axisymmetric disturbances in the 
form of spiral vortices that extend throughout the fluid sample. Digital video-imaging 
measurements of the spatial and temporal dynamics of the instability in a highly elastic, 
constant-viscosity fluid show that the resulting secondary flow is composed of 
logarithmically spaced spiral roll cells that extend across the disk in the self-similar 
form of a Bernoulli Spiral. 

Linear stability analyses are reported for the quasi-linear Oldroyd-B constitutive 
equation and the nonlinear dumbbell model proposed by Chilcott & Rallison. 
Introduction of a radial coordinate transformation yields an accurate description of 
the logarithmic spiral instabilities observed experimentally, and substitution into the 
linearized disturbance equations leads to a separable eigenvalue problem. Experiments 
and calculations for two different elastic fluids and for a range of cone angles and 
Deborah numbers are presented to systematically explore the effects of geometric and 
rheological variations on the spiral instability. Excellent quantitative agreement is 
obtained between the predicted and measured wavenumber, wave speed and spiral 
mode of the elastic instability. The Oldroyd-B model correctly predicts the non- 
axisymmetric form of the spiral instability; however, incorporation of a shear-rate- 
dependent first normal stress difference via the nonlinear Chilcott-Rallison model is 
shown to be essential in describing the variation of the stability boundaries with 
increasing shear rate. 

1. Introduction 
The torsional motion of a fluid in the narrow gap between a plate and an inverted 

cone is one of the most common viscometric flows used in the measurement of 
rheological material functions. A typical cone-and-plate rheometer configuration is 
shown in figure 1 and consists of a precision machined conical fixture which is mounted 
with its symmetry axis perpendicular to a flat circular disk. For creeping flow 
conditions and small cone angles Bo 4 1, the motion between the fixtures is purely 
azimuthal with no recirculating secondary flow. Measurements of the total torque and 
normal force exerted by the fluid on the lower plate as a function of the imposed 
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FIGURE 1. Schematic diagram of the cone-and-plate geometry used in experimental measurements. 

rotation rate Q of the cone are used to determine the viscous and elastic material 
functions of the fluid sample as a function of the deformation rate in the gap. Analysis 
of the dynamic quantities measured in this geometry is simplified because, in contrast 
to the corresponding motion between coaxial parallel plates, the circular base flow 
between the cone and plate is homogeneous (at least for slow flows and small cone 
angles), and the shear rate throughout the fluid is constant with a value given by 
?is$ = Q/O, (Bird, Armstrong & Hassager 1987a). 

For larger cone angles and/or finite Reynolds numbers, it is well known that the 
purely circumferential flow cannot satisfy the equations of motion and a weak 
secondary flow consisting of an axisymmetric toroidal vortex develops between the 
cone and plate (Turian 1972; Heuser & Krause 1979). In Newtonian fluids this 
secondary motion is driven by centrifugal forces and is directed radially outwards near 
the surface of the moving fixture. However, early flow visualization experiments by 
Giesekus (1963) and Walters and coworkers (Walters & Waters 1968; Griffiths & 
Walters 1970) with polymer solutions in devices with large cone angles (6, = 30°, 60") 
showed that elastic hoop stresses directed along the curved streamlines can lead to a 
steady axisymmetric secondary flow that is inwardly directed near the moving fixture. 

Such secondary motions in the cone-and-plate geometry have been accurately 
described analytically by considering perturbation expansions of the governing 
momentum and constitutive equations in terms of the cone angle Oo, the Reynolds 
number Re = pQR2/q, and, for viscoelastic fluids, in terms of the dimensionless 
Deborah number De E A, Q which measures the relative importance of elastic effects 
to viscous effects in the flow. In these expressions, p is the fluid density, q is the fluid 
viscosity and A, is a characteristic relaxation time for the viscoelastic fluid. Early 
numerical solutions for a cone-and-plate system of infinite radial extent were obtained 
by Giesekus (1963) and by Walters & Waters (1968) using second-order fluid models 
(Bird et al. 1987 a). Very recently, closed-form analytic expressions for the axisymmetric 
secondary motions of the Oldroyd-B constitutive model have been obtained for both 
the unbounded case (Olagunju & Cook 1992) and for a finite cone-and-plate geometry 
incorporating aTT deformable free surface (Olagunju 1993). These calculations 
corroborate the flow visualization results described above and also indicate that if both 
inertial and elastic effects are important in the flow, then two distinct recirculations 
may develop : an interior, elastically dominated vortex that is inwardly directed near 
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the moving surface and a second, inertially driven recirculation at larger radii that is 
outwardly directed. 

All of the observations and calculations discussed above indicate that for viscous 
fluids with Re < 1 and for small cone angles, O,, d 10" (0.175 rad), these steady 
secondary flows have a negligible effect (i.e. less than 1 YO) on the experimentally 
measured material properties of the fluid in a rheometric device. Consequently the flow 
in a cone-and-plate rheometer is assumed to be steady and one-dimensional at all 
rotation rates. However, recent analyses have indicated that the presence of elastic 
normal stresses along the closed circular streamlines can destabilize the torsional 
motion even under creeping flow and small-gap conditions, and ultimately lead to the 
onset of more complex non-viscometric motions (Larson 1992). Phan-Thien (1985) 
considered the stability of the creeping motion between a cone-and-plate for a 
viscoelastic fluid described by the quasilinear Oldroyd-B model (Bird et al. 1987a). By 
considering axisymmetric disturbances that could be represented in a similarity form, 
Phan-Thien showed that there exists a critical Deborah number Decrit = A, QCrit beyond 
which the base azimuthal motion is unstable to infinitesimal perturbations. This 
stability criterion was found to be independent of the cone angle 8,, and to depend only 
on the solvent viscosity ratio of the fluid defined as p = vs/vo, where vS is the viscous 
contribution of the Newtonian solvent, and vo is the total viscosity predicted by the 
constitutive model. More recent calculations by Olagunju & Cook (1993) extended this 
analysis for the Oldroyd-B model to include O(1) inertial effects and axisymmetric 
disturbance kinematics of a more general form. Asymptotic solutions of the governing 
equations again indicate that at a critical Deborah number, Decrit, there is an exchange 
of stability and loss of uniqueness in the steady solution. Incorporating inertial effects 
was found to destabilize the steady axisymmetric base solution and to reduce the 
critical Deborah number below the value found by Phan-Thien. 

Experimental measurements also have suggested the presence of viscoelastic flow 
instabilities in cone-and-plate geometries. Early qualitative flow visualization pho- 
tographs were presented by Kocherov et al. (1973) for polyethylene melts in a disc-type 
extruder containing a cone-and-plate fixture at the exit. No torque or normal force 
measurements were presented, but the introduction of tracer particles showed that the 
fluid pathlines were not concentric circles but of a non-axisymmetric spiral form. The 
extent of this secondary flow was found to depend on the rotation rate of the conical 
fixture and on the cone angle 8,. Although no quantitative measurements were 
presented, these spiral patterns were labelled by Kocherov et al. as 'spirals of 
Archimedes'. A similar flow instability in cone-and-plate geometries with cone angles 
8, < 10" was reported later by Kulicke & Porter (1979) in rheological studies of shear- 
thinning polymer solutions. The unstable motion that they observed resulted in a time- 
dependent increase in the normal force exerted by the fluid on the plates beyond a 
critical shear rate jcrit which was found to vary with the molecular weight and 
concentration of the polymer. No observations of the spatial structure of the flow 
between the cone and plate were provided; however, the authors did present 
photographs of the deformable fluid surface at the edge of the conical fixtures. 
Following the onset of unsteady motion, spatially periodic surface irregularities were 
observed at the interface which were interpreted in terms of recirculating secondary 
vortices. These vortices scaled in size with the gap height at the edge of the cone-and- 
plate rheometer and slowly precessed in the direction of imposed rotation at a rate 
slower than the rotation rate of the device. 

Magda & Larson (1988) performed the first experiments connecting rheological 
measurements in a cone-and-plate geometry with the linear stability analysis of Phan- 
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Thien. The experiments utilized highly elastic, constant-viscosity ' Boger fluids' (Boger 
1977/78) to eliminate shear-thinning effects, and conical fixtures with angles in the 
range 2.5" d 8, d 10". In addition to documenting the time-dependent increase in the 
torque and normal forces measured in the device, Magda & Larson also demonstrated 
that the critical shear rate for onset of instability varied inversely with the cone angle 
and thus corresponded to an approximately constant critical value of the rotation rate, 
in accord with the analysis of Phan-Thien. Subsequent measurements by Laun & 
Hingmann (1990) and McKinley et al. (1991) corroborated these observations; 
however, these studies also showed that the detailed dynamics of the elastic cone-and- 
plate instability that are observed experimentally are not of the form predicted by the 
Phan-Thien-Olagunju analyses but correspond to a subcritical Hopf bifurcation from 
the steady base flow. 

None of these recent experimental studies in the cone-and-plate device have 
provided information about the spatial characteristics of the flow instability which can 
be quantitatively compared with the predictions of stability analyses. In a recent paper 
(Byars, Oztekin, Brown & McKinley 1994; henceforth referred to as BOBM) we 
presented a detailed experimental and theoretical study of the related torsional motion 
of a viscoelastic fluid between two coaxial parallel disks of radius R separated by a 
narrow gap H < R. In this work we showed that the secondary motion that developed 
between the plates beyond a critical Deborah number, Decrit, was not of the 
axisymmetric von Kirman form, but in fact consisted of Archimedean spiral vortices. 
These vortices had a radial wavelength that scaled with the gap height, H ,  and travelled 
radially outwards across the disk from a critical radial location denoted R*. The critical 
onset conditions and spatial form of these disturbances were first modelled by Oztekin 
& Brown (1993), who considered the linear stability of the Oldroyd-B model to non- 
axisymmetric spiral disturbances of the form exp[i(ar + me) + crt], where a is the radial 
wavenumber and m is a real integer defining the azimuthal wavenumber. By localizing 
the resulting linear disturbance equations about a critical radius R*, it was possible to 
separate coordinates and obtain a generalized eigenvalue problem that was solved to 
obtain neutral stability curves for torsional motion between parallel plates. This 
analysis of the Oldroyd-B model indeed predicted the onset of spiral instabilities at a 
finite radius and Deborah number, in good qualitative agreement with the available 
experimental evidence. 

The subsequent experiments and computations in BOBM also showed that a far 
more complete understanding of these torsional viscoelastic flow instabilities can be 
obtained by incorporating a nonlinear constitutive model that accurately describes the 
shear-rate-dependent fluid rheology of the experimental test fluids. In particular, shear 
thinning in the first normal stress coefficient, !PI(?), which provides the driving force 
for the elastic instability, was predicted to restabilize the azimuthal shearing motion 
between the plates at large radii and confine the spiral vortices to an annular region at 
intermediate radii across the disks. This localized region of unsteady flow was 
confirmed by the experimental observations. 

No quantitative observations of the azimuthal spatial variation of the secondary 
flow between a cone and a plate have ever been performed; however, the early work 
of Kocherov et al. (1973) suggests that the unsteady flow observed will not be 
axisymmetric but also will consist of spiral recirculating vortices. The close similarities 
between the critical conditions and time-dependent torque/normal-force measure- 
ments in cone-and-plate and parallel-plate geometries that have been observed by 
previous investigators (Magda & Larson 1988; McKinley et al. 1991) suggest that the 
elastic flow instabilities in both configurations may be very similar. There are, however, 
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a number of very important differences between the cone-and-plate and parallel-plate 
geometries which make our previous analysis for the coaxial-disk geometry 
inappropriate. Most importantly, in the limit of small cone angles (0, < 1) the base 
shear flow between the cone and plate is a homogeneous shear flow with a shear rate, 

= Q/0,,, that is independent of radial location across the disk. Thus, at any given set 
of experimental conditions, both the shear rate and the Deborah number will be 
uniform throughout the fluid, and it is not appropriate to consider localized 
disturbances about a given critical radius R*, as was the case for the parallel-plate 
geometry. In addition, there is no characteristic lengthscale H between the cone and the 
plate on which to base the scale of the secondary vortices, and we may therefore expect 
the wavelength of the most unstable, non-local disturbance mode to vary throughout 
the fluid sample. 

These geometric distinctions between the two configurations result in markedly 
different disturbance kinematics in the cone-and-plate geometry. In this work we 
present quantitative video-imaging observations of the radial and azimuthal structure 
of the secondary flow which show that the elastic instability has the spatial form of a 
Bernoulli spiral with a logarithmic radial spacing. Unlike the localized Archimedean 
spirals observed in our previous parallel-plate studies, this secondary motion extends 
throughout the fluid, and the wave speed and wavelength of the disturbance increase 
linearly with the radius. These experiments suggest the definition of a transformed 
radial coordinate or similarity variable which results in a separable eigenvalue problem 
when substituted into the linearized momentum disturbance equations. The nu- 
merically calculated wavenumbers in the transformed coordinate agree extremely well 
with the experimental values for a range of cone angles. Even though the shear rate 
throughout the cone-and-plate device is spatially homogeneous, the dimensionless ratio 
of the elastic normal stress to viscous shear stress measured in the experimental test 
fluids varies nonlinearly with the rotation rate and cone angle. We show that it is 
necessary to incorporate a nonlinear viscoelastic constitutive equation that models this 
variation in the viscometric properties to even qualitatively describe the experimentally 
determined stability boundaries in this flow. The connections between these two 
distinct instabilities in the cone-plate and parallel-plate geometries are also revealed by 
considering geometries with vanishingly small cone angles. 

2. Experimental 
2.1. Geometry 

The geometric configuration of the cone-and-plate device is shown schematically in 
figure 1, with the origin of a spherical coordinate system (t, 0, q5) located at the apex 
of the cone. In this work the lower plate is held fixed while the conical fixture is rotated 
at a constant angular velocity 52. A set of conical fixtures with a constant radius of 
R = 25 mm and precisely machined cone angles of 0, = 4", 6", 10" and 15" were used 
in the experiments. The lower plate consisted of a smooth, polished Plexiglas sheet 
carefully aligned to be perpendicular to the axis of rotation. In order to prevent 
frictional contact between the apex of the cone and the plate, the tip of each cone was 
truncated to leave a gap of 50 pm at the centre of the device. The conical fixture is 
rotated by a DC gear-motor (Electrocraft E586) with a tachometer speed control. The 
rotation rate SZ is used to define a characteristic timescale, and the homogeneous shear 
rate in the gap is given by = sZ/B,. In these experiments, the maximum rotation rates 
attained are approximately Qmaz - 10 rad s-l corresponding to a maximum shear-rate 
in the 4" cone of p,,, - 150 s-l. 
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0.31 % PIB/H100 0.20% PIB/H300 

T o  Pas1 13.76 48.1 
7, Pas1 8.12 40.1 
u,, Pas2] 8.96 19.8 

0.794 1.24 
0.59 0.84 

15 20 
2 
L 

TABLE 1. Zero-shear-rate viscometric properties of the two polyisobutylene (PIB) Boger fluids used 
in the experimental observations of the torsional flow instability. For completeness, the model 
parameters required for the Oldroyd-B and Chilcott-Rallison constitutive models are also given. 

Details of the experimental procedure are discussed in BOBM and are only briefly 
summarized here. Fluid samples containing trace quantities of plate-like mica seed 
particles (Kalliroscope Corp., Groton, MA) are placed between the cone and plate, the 
fluid sample is illuminated using a fibre-optic light source, and observed from below 
through the Plexiglas sheet. Images of the fluid motion were recorded using a high- 
resolution monochrome CCD camera (COHU 49 10) and a Super-VHS video recorder 
(Panasonic AG1960). Individual images (480 x 480 pixels) of the entire cross-sectional 
area of the disk were digitized from each frame of the videotape using an 8-bit frame- 
grabber (DIPIX P360), yielding a spatial resolution of - 0.10 mm/pixel. Standard 
digital image processing algorithms are used to correct for non-uniform lighting, 
remove high-frequency pixel noise, and expand the dynamic range of each image. The 
time series of resulting digital image intensities I(!, ~, i) are then used to determine the 
wave speed, wavelength and spiral structure of the secondary flow as described below 
in $2.3. 

2.2. Fluid rheology 
Two polyisobutylene (PIB) Boger fluids have been used for the experiments. The first 
fluid consists of 0.31 wt% high molecular weight PIB (Exxon Vistanex L-120, MW - 
1.8 x lo6 g mol-l), dissolved in 4.83 wt YO tetradecane (C14) and 94.86 wt ?LO polybutene 
(Amoco H100, MW - 900 g mol-'), and the second fluid consisted of a lower 
concentration (0.20 wt Yo) of the identical polyisobutylene, dissolved in a more viscous 
solvent consisting of 3.80 wt% C14 and 96.00 wt% of another polybutene grade 
(Amoco H300, MW - 1300 g mol-l). The temperature dependence of the material 
properties of these two fluids is described by an Arrhenius equation with flow 
activation energies of AH = 61.2 kJ and 62.0 kJ, respectively. The results presented in 
this paper have all been corrected to a reference temperature of T, = 25 "C. Detailed 
rheological data for these fluids have been presented elsewhere (see Quinzani et al. 1990 
and BOBM) and are briefly reviewed in table 1. 

In table 1, vo and Yl0 are the zero-shear-rate values of the viscosity and first normal 
stress coefficient, respectively, for each polymer solution and vs is the solvent viscosity. 
The single relaxation time in the Oldroyd-B model is defined in the zero-shear-rate limit 
by A, = Y10/2(70 - vs),  and /3 = q s / v O  is the solvent viscosity ratio. Also shown in table 
1 is the value of the extensibility parameter L determined from a single-mode fit of the 
constitutive equation proposed by Chilcott & Rallison (1988) to the steady shear 
viscometric data. In this constitutive equation, the polymeric contribution to the extra 
stress S is written simply as 

4 + Al(W)(l) = v p  9, 
where A, is the single time constant in the model, f = (L2 + ( A l / y p )  tr ( s ) ) / ( L 2  - 3) is a 
measure of the nonlinearity in the spring connecting the dumbbells, and r p  is the 
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polymeric contribution to the viscosity. The dimensional shear-rate tensor is given by 
j = Vii + (Vii)', and the upper-convected derivative for the polymeric extra stress 
tensor $ is defined as 

a s  s(l) = -$+ li. vs- [(va)'. s + s.  Vii]. 

The solvent is Newtonian with constitutive equation t, = yS j ,  and the total extra sires 
tensor resulting from fluid motion is given by the linear superposition, t = t,+S. 

In the limit L-tco, the dumbbells become infinitely extensible and ( l a )  simplifies to 
the upper-convected Maxwell model ; the constitutive equation for the total extra stress 
tensor z^ is then equivalent to the Oldroyd-B model (Bird et al. 19876). Although the 
Chilcott-Rallison model was first proposed to describe the finite extensibility of 
polymer molecules in strong straining motions (cf. Chilcott & Rallison 1988), we have 
chosen to use it in this study of a torsional shearing motion since it provides a 
convenient way of systematically varying the elastic properties of a non-Newtonian 
fluid in the absence of any modifications to the steady shear viscosity. For finite values 
of L, the model predicts the onset of shear thinning in the first normal stress coefficient 
beyond dimensionless shear rates of A, E L2/[8(L2- 3)]'/2 with an asymptotic 
decrease at high shear rates which scales as Yl(p) - v-'. As in BOBM, we then define 
an 'apparent' relaxation time by A,(?) = Y1(v)/2[7(v) -7,] to describe the shear-rate 
dependence of the elastic properties of the fluid. Henceforth, we explicitly denote a 
Deborah number based on the zero-shear-rate relaxation time as De, = A1O, and a 
second, shear-rate-dependent quantity as De(y) = A,(?) 52, where the apparent 
relaxation time is evaluated at the shear rate 

Although the parameter L relates to the extensibility of the polymer molecules and 
its value would be best determined from extensional viscosity measurements, in the 
absence of such measurements its value has been chosen to capture the shear-thinning 
behaviour of Yl(v) observed experimentally at high shear rates. This criterion yields 
values of L in the range 12 < L < 20 for both fluids. Very recently, Tirtaatmadja & 
Sridhar (1 993) have reported careful filament stretching measurements on samples of 
the 0.31 wt % fluid listed in table 1 .  These measurements suggest that the Trouton ratio 
of this PIB Boger fluid in an homogeneous uniaxial extensional deformation is in the 
range 2-3 x lo3. Using these measurements to determine the extensibility parameter 
suggests significantly larger values of L z 50. This important difference in the 
appropriate value of the model parameter L is discussed further in $5 .  

= 52/19,. 

2.3. Coordinate transformation and similarity solution 
The video-imaging measurements presented in $ 3  show that the spatial form of the 
secondary flow that develops following onset of the elastic cone-and-plate instability 
consists of one or more non-axisymmetric recirculating vortices. These roll cells are 
wound into a well-defined spiral structure with a characteristic logarithmic radial 
spacing across the disks. In this section we define the normal mode decomposition used 
to describe infinitesimal perturbations of this form and show that the two-dimensional 
planform of this representation has the form of self-similar Bernoulli spiral curves. 

The non-local spatial form of the secondary motion that is observed in the 
experiments, coupled with the lack of a characteristic lengthscale in the gap between 
the rotating cone and stationary plate suggests the use of a coordinate transformation 
to simplify the governing equations. We define a transformed radial coordinate, 6, by 

< = In (?/&), (2) 
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where ? is the dimensional radial coordinate in a (?,@,$) spherical polar coordinate 
system as shown in figure 1 ; and R, is an arbitrary reference lengthscale, for example 
the finite radius of the experimental geometry. 

When expressed in this dimensionless transformed radial coordinate, the ex- 
perimental measurements of the separation between adjacent roll cells become equally 
spaced and the secondary motion can be represented by Archimedean spirals as in the 
previous work by BOBM for the parallel-plate elastic instability. In transformed 
coordinates, the disturbances considered for any dimensionless variable f in  the linear 
stability analysis are then represented in the form 

(3) 

where a5 is the dimensionless wavenumber in the transformed radial coordinate, m is 
an integer indicating the periodicity in the azimuthal direction, v is the dimensionless 
complex growth rate of the disturbance scaled with Q-l, and the complex amplitude 
function F(0) satisfies the boundary conditions of the disturbance equations on the 
upper and lower fixtures. 

In addition to transforming the radial coordinate, it is necessary to scale and non- 
dimensionalize the disturbance velocity components (zir, zig, zi4) that characterize the 
secondary flow in the equations of motion. Since the secondary motion is driven by the 
rotation of the conical fixture, by analogy with the von Karman transformation each 
component of the disturbance velocity vector is scaled by (?Q). The analysis here 
considers only infinitesimal perturbations to the velocity field ; for self-consistent 
calculations of the amplitude of the disturbance velocity field, the continuity equation 
indicates that the perturbation to the vg component of velocity should be O(0,) smaller 
than the other terms. 

As described in 94, introduction of the above transformations for the perturbation 
velocities and the radial coordinate, forces the linearized momentum and constitutive 
equations to become independent of ? and yields a separable eigenvalue problem which 
can be solved to find the critical Deborah number Deerit = Decrtt(at, m, p, 0,) at which 
Re(v) = 0. In order to perform a quantitative comparison of the video-imaging 
measurements to the linear stability calculations it is important to understand how the 
form of the disturbance kinematics given by (2) and (3) is manifested in the 
experimental apparatus. As in BOBM, the test fluid is seeded with small plate-like 
particles which align with the local flow direction. Illumination of the fluid sample and 
observation of the reflected light, as shown schematically in figure 1, results in a time- 
series of two-dimensional video images in the (?, $)-plane. If the disturbance kinematics 
are of the form given by (3) then the intensity I of the images will vary as 

2 (4) I(?, $, t) I, eiacln(f /R,)+im4+~t  

where I, represents an (unknown) depth average of the reflected light from the fluid 
sample at each radial position. 

Selecting a point in a single video image corresponding to a maximum intensity in 
the secondary motion and following the location of this recirculating vortex in the 
(?, $)-plane yields a locus of points given by 

At, 8, $, t) = F(0) eiaet+im4+ut, 

a 
d $ = O = I d F + m d $ .  

r 

Rearranging and integrating this expression results in a spiral curve R($) defined 
parametrically by 

R($) = R, e-(m/add, (6) 
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where - co < $ < co and R, is an integration constant corresponding to the (arbitrary) 
radial location at which the spiral curve passes through the point $ = 0. 

The single curve defined by ( 5 )  is known as a Bernoulli spiral, and the constant factor 
(-ag/m) is often defined as a winding number n. Unlike the Archimedean spirals 
observed by BOBM, there is no well-defined lengthscale in the radial direction. A 
rotation of the coordinate system by a factor q$, is equivalent to a scaling of the radial 
coordinate by a factors = en#,, and this curve is a self-similar or fractal object (Peitgen, 
Jiirgens & Saupe 1993). 

Since the azimuthal and transformed radial wavenumbers (m and a5, respectively) 
are independent parameters, the most general spatial form of secondary motion given 
by (2) is more complex than a single Bernoulli spiral of the type given in (6); more 
specifically, the disturbance possesses an additional m-fold degree of azimuthal 
symmetry. This symmetry is illustrated schematically in figure 2 by plotting the 
maxima in the disturbance kinematics for a fixed value of the wavenumber at and 
different values of the azimuthal wavenumber m. As in BOBM, non-zero values of the 
parameter Iml correspond to the integer number of intertwined non-intersecting spiral 
curves; for m = 0 the disturbance corresponds to axisymmetric toroidal vortices with 
a logarithmic radial spacing. 

Both of the wavenumbers (m and a[) describing the disturbance can be determined 
from experimental measurements of the grey-scale intensity Z(t, $). Measurements of 
the radial locations (RJ of successive peak intensities taken radially outwards across 
the disk at any fixed value of the azimuthal coordinate $ are related by a geometric 
series (cf. (4)) 

R,+JR, = ef.lria~. (7) 
It is clear from figure 2 that for m > 1, the successive peaks Ri and Ri+l at a fixed 

value of $ will not correspond to the same recirculating roll cell. Alternatively, 
following the locus R($) of a single spiral recirculating vortex, describes a path given 
by (6). Linear regression of In R($) with the azimuthal coordinate then determines the 
winding number --/a5 of the spiral. These two measuring techniques are used in $ 3  
to independently determine the wavenumbers a5 and m of the elastic cone-and-plate 
instability. 

The wave speed of the disturbance is determined by following the spatial translation 
of the spiral cells such that DI/Dt^ = 0. The dimensional radial wave speed tr of the 
cellular disturbance is thus calculated from (4) to vary linearly across the disk as 

and the direction of propagation is determined from the sign of the imaginary part of 
the eigenvalue cr. 

3. Experimental results 
Experimental observations are presented that illustrate the procedure by which the 

spatial and temporal characteristics of the purely elastic cone-and-plate instability are 
determined. A detailed analysis of the spatial and temporal evolution of the flow 
instability in the 0.3 1 wt % Boger fluid for a cone angle of 8, = 10" is presented in $3.1, 
and the parameters of the spiral that describes the global form of the non-axisymmetric 
disturbance are determined. The effects on the flow instability of systematically varying 
the cone angle are demonstrated in $3.2. Finally, the effects of changing fluid rheology 
are discussed in $3.3. 
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(4 (b) (4 

FIGURE 2. Logarithmic spirals of the form given by (3): (a) axisymmetric mode, m = 0; (b) non- 
axisymmetric mode, m = 1 ; (c) nested non-axisymmetric spirals, m = 2. The wavenumber ag of the 
spiral in the transformed radial coordinate is the same in each case. 

3.1. Spiral instability 
The series of grey-scale images shown in figure 3 depict the spatial and temporal 
evolution of the flow for the 0.31 wt% PIB Boger fluid and a conical fixture with 
0, = 10". A steady torsional flow is initially established between the cone and plate at 
a rotation rate below the critical value Derit and this flow is observed for 5 minutes or 
longer to ensure that it remains stable. Note that even in the steady base flow, the 
intensity of the light reflected by the seed particles in the fluid is not radially uniform 
across the disk. This is because the depth of the fluid sample reflecting the incident light 
increases radially outwards from the apex of the cone which is located at the centre of 
each image. The Deborah number was then incremented to a supercritical value of 
De, = 5.28 by increasing the rotation rate of the conical fixture at the time indicated 
by 21 : 00 : 00 (min: sec: frame) in figure 3. Although the flow is already unstable in figure 
3(a), the amplitude of the secondary flow is too small to be observed because of the 
slow temporal growth rate of the disturbance near the critical conditions. Seventy-five 
seconds later, the secondary flow shown in figure 3(b) has grown sufficiently to be 
observed as a bright spiral vortex. Direct observation of successive frames on the 
videotape reveal that this spiral vortex slowly translates inwards towards the apex of 
the cone. The instability continues to grow in intensity, and it is clear from figure 3 (c) 
that there is a single spiral that fills the entire region between the cone and plate. 
Eventually nonlinear interactions become important, as shown in figure 3 (d ) ,  and there 
is no longer a single clearly defined spatial structure to the flow. However, in contrast 
to observations of the fine-scale turbulent motion observed following onset of inertial 
instabilities between a cone and plate (Sdougos, Bussolari & Dewey 1984), it is clear 
that these elastically driven disturbances continue to propagate throughout the entire 
fluid sample and are composed of cellular structures with a wide spectrum of spatial 
wavenumbers. This non-axisymmetric time-dependent flow will persist indefinitely, 
until either the rotational motion is completely stopped, or the rotation rate is reduced 
below a second, lower critical value for return to the steady two-dimensional torsional 
flow. This hysteresis is characteristic of a subcritical bifurcation and has been 
documented clearly in the previous measurements of Magda & Larson (1988) and 
McKinley et al. (1991). 

Of course, the complex three-dimensional time-dependent flow that ultimately 
develops at long times (cf. figure 3d) cannot be described by a linearized stability 
analysis; however, such a linear analysis can describe the initial growth of infinitesimal 
disturbances in the fluid at short times and the slow transient evolution of the flow 
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FIGURE 3. Onset and growth of the purely elastic instability observed in the torsional flow of the 
0.31 wt % PIB fluid in a cone-and-plate geometry with 8, = 10": (a) flow appears stable shortly after 
the Deborah number is increased to a supercritical value De, = 5.28 at time f =  21 :OO:OO 
(min:s:frame); (b) 75 s later the secondary flow becomes visible; (c) inward-travelling non- 
axisymmetric flow consisting of a single logarithmic spiral vortex; ( d )  ultimate fully nonlinear state. 
Note that the direction of rotation of the upper conical fixture in this and all subsequent figures is 
counterclockwise. 

away from the steady base motion following a small, carefully controlled increase in 
the rotation rate beyond the critical value Qcrt t .  

In order to quantify the structure of the instability, the individual grey-scale images 
are processed as described in $2 to enhance the visibility of the secondary flow. The 
time-dependent evolution of the grey-scale intensity along a fixed radial line passing 
through the origin is shown in figure 4. Each profile is taken from a different video 
image evenly spaced at 0.2 s (6 video frames) apart and the profiles are offset vertically 
for clarity. Negative radial coordinates on the abscissa indicate distances along the 
diametric line given by extending q5 + q5 + 7c rad. This series of profiles clearly shows 
that the recirculation moves slowly inward, and that the instability fills the entire gap, 
in sharp contrast to the Archimedean spiral instability in the parallel-plate geometry, 
which only filled an annular region between the disks. We demonstrated in BOBM that 
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FIGURE 4. Temporal evolution of radial intensity profiles along a fixed line of q5 = $T rad. The 
azimuthal origin q5 = 0 is indicated in figure 2, and q5 increases in the counterclockwise direction. The 
ordinate is vertically offset for each profile to show the translation of the cells, and the timescale is 
shown in (min:~) to correspond to the images shown in figure 3. 

the limited extent of the elastic instability in the parallel-plate geometry results from 
shear thinning in the normal stresses at the higher shear rates near the outer edge of 
the disk. By contrast, the homogeneous base flow in the cone-and-plate geometry 
results in a shear rate that is uniform throughout the sample. The intensity, the distance 
between successive maxima of the line profiles, and the size of each cell increase with 
radius, as shown in figure 4. The smaller cell size near the centre of the geometry 
coupled with the fact that there are fewer seed particles to reflect light in the narrow 
gap makes it difficult to resolve maxima at radii of less than about r" ,< 4 mm (0.16 R). 

From the form of the logarithmic similarity transform, we expect the magnitude of 
the radial component of the wave speed, P,, to increase linearly with radius (cf. (8)). 
Although the profiles of figure 4 clearly show that the spiral travels radially inwards, 
it is difficult to quantitatively measure 2, from these profiles. The radial position of each 
maximum can be found at each time step, but any estimates of the wave speed require 
assuming that tr is constant over some interval Af. A more direct approach is to 
calculate the wave speed in transformed coordinates (t, 8, #), since the dimensionless 
wave speed c5 is constant. The displacement of the &-location of each peak with 
dimensionless time t is shown in figure 5.  From such plots, the dimensionless wave 
speed of the elastic spiral instability in a 10" cone-and-plate geometry was calculated 
to be c5 = -0.0107+0.0030. 

A sequence of radial profiles similar to those in figure 4 were also obtained at 
different angular positions, at a fixed time, in order to study the azimuthal structure of 
the instability. The wavenumber of the spiral varies linearly with radial position in 
physical (r", 8, #)-space, but is a constant in the transformed (&8, #)-coordinates. 
Without any additional knowledge of the spatial structure of the flow, a5 is determined 
from the geometric series of the radial locations of successive peaks using (7). The plot 
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FIGURE 5 .  Positions of the peaks measured from the intensity profiles of figure 4 for De, = 5.28, 
Oo = 10" in the transformed domain (E,  0, $) as a function of dimensionless time. The wave speed 
is calculated to be cf = -0.0107+0.0030. 

of the dimensionless ratio Ri+,/Ri shown in figure 6(a) gives an average value of 
R,+,/R, = 1.345, corresponding to a dimensionless wavenumber of a5 = 21.2. The 
value of m describing the non-axisymmetric structure of the flow instability often can 
be determined in experiments directly by inspection of images such as figure 3, but for 
higher mode numbers a more robust regression technique is necessary. In the (Lj,O,$)- 
domain the spiral is of Archimedean form, so a linear regression of the experimental 
data analogous to those reported in BOBM yields the best fit values of at and $o for 
a given choice of m. Selection of the Archimedean spiral which most closely describes 
the overall spatial form of the secondary motion is based on the linear regression which 
results in the highest correlation coefficient. For the elastic instability shown in figures 
3-5 we find that m = - 1, where modes m < 0 indicate 'negative angle spirals' which 
spiral radially outwards as $ increases (cf. (6)). The ability of this spiral form to 
accurately describe the experimental data is demonstrated in figure 6 (b), where 
regression of the (&$)-coordinates of each peak Ri to (6) yields a single curve. For 
(ml > 1, there would be Iml different curves corresponding to ImJ intertwined spiral 
vortices each offset by an angular displacement of 27c/m. The slope of this single line 
gives the winding number n of the spiral defined in (6) as n = 0.047, in good agreement 
with the values of m and at independently determined above. 

The data in figure 6 (b) can be viewed as the spiral structure of the elastic cone-and- 
plate instability in (&O, $)-coordinates when 'unwrapped' in the $-direction. This 
description is contrasted directly to the original video-imaging observations in figure 
7, where the best-fit line from figure 6(b) has been transformed back in ( t , O , $ ) -  
coordinates and juxtaposed directly with a raw image of the secondary flow structure. 
It is clear that a single Bernoulli spiral provides an excellent description of the elastic 
cone-and-plate instability. 
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3.2. Variation with cone angle 0, 
Similar experimental measurements to those described above have also been conducted 
with the 0.3 1 wt % PIB Boger fluid using conical fixtures with cone angles of 4", 6" and 
15". In the interests of brevity we only summarize the key features of the elastic 
instability in each geometry. Quantitative comparisons of the experimental data with 
linear stability calculations are presented in $95 and 6. In general, the observations 
show that as the cone angle is increased, the critical Deborah number De,,,,, increases 
and the transformed radial wavenumber at of the disturbance decreases. In addition to 
this trend, the azimuthal mode number of the most unstable non-axisymmetric 
disturbance is also found to increase as the cone angle decreases. In the 6" cone-and- 
plate geometry a logarithmic spiral instability with m = -3 is observed very close to 
the critical onset conditions. The three intertwined branches of this spiral instability are 
shown in figure 8 next to an image of the flow at De, = 4.95. The wavenumber in this 



Spiral instabilities in elastic Jlows between a cone and plate 137 

20 

10 

\ 

-1 0 

-20 

-20 -10 0 10 20 

x (mm) 
FIGURE 7. (a) Raw video image of the flow instability observed at De, = 5.28 and 8, = 10"; (b) 
locations of peaks obtained from processed image and the best fit of (6) to these positions with 
m = - 1, a - 21.2 and 4, = - 1.12 rad. 5 -  
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FIGURE 8. (a) Raw image of the flow instability at flow conditions of De, = 4.95 in the 6" cone-and- 
plate geometry. (b) Locations of peaks obtained from processed image (0)  and the best fit of (6) to 
these positions with m = -3, ag = 30.4 and 4, = -0.25 rad. 

geometry is determined to increase to at =.30.4 and the dimensionless wave speed 
decreases slightly from the value determined in the 10" geometry to cg = -0.0128. This 
increase in the azimuthal wavenumber at lower cone angles is consistent with our linear 
stability calculations discussed in 95. 

For the largest conical fixture (6, = 15O), gravitational body forces overcame the 
surface tension in the large gap at the outer edge of the cone, and observations of the 
static fluid meniscus shape showed that fluid only bridged the region between the 
fixtures out to a reduced radius of R - 13 mm. For this large cone angle, the base flow 
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Fluid *o Deo % 

- - - 
(deg.) 

4 -  
6 4.95 30.3 -0.0128 -3 

10 5.28 21.2 -0.0107 -1  
15 6.32 16.0 -0.0009 -1 

0.31 % PIB 
(J = 0.59) 

o'20% 'IB 7.60 45.0 -0.0001 -0 
1 1 0  5.87 16.6 -0.0147 -1  (J = 0.84) 

TABLE 2. Summary of the variations in the Deborah number, wavenumber, wave speed and azimuthal 
mode number at onset of the elastic instability observed experimentally in two elastic Boger fluids 
over a range of cone angles. 

is not expected to be purely azimuthal (Walters & Waters 1968; Olagunju 1993); 
however, no radial recirculation was discernible from flow visualization. Despite these 
experimental non-idealities, as the Deborah number is incremented to a critical value 
of De, = 6.32, a negative angle spiral instability with m = - 1 is still observed in the 
fluid sample. The wavenumber is determined to be af z 16.0 and the wave speed is 
reduced to a value of cf = -9.0 x lop4. 

These variations in the critical conditions for onset of the instability with cone angle 
are not unexpected and can be at least qualitatively explained by a stability analysis for 
the quasilinear Oldroyd-B constitutive model. However, the most striking observation 
is that for a cone angle of 4", no elastic instability was observed at any rotation rate 
up to the maximum obtainable Deborah number of De, = 8.31 (Re = 0.42). The 
possibility that this apparent lack of instability resulted simply from insufficient seeding 
in the thin fluid sample to reveal the secondary motion was eliminated by performing 
careful supplementary experiments in a conventional rheometer (Rheometrics RMS- 
800). No time-dependent variations in either the total torque or the normal force 
exerted on the fixtures was detected over the same range of Den. As we discuss in 95.2, 
the complete elimination of this elastic instability cannot be explained using the quasi- 
linear Oldroyd-B model, which actually predicts that the critical Deborah number 
should decrease monotonically as the cone angle decreases. However, the restabilization 
of the base flow is explained by incorporating a constitutive equation that predicts a 
shear-rate-dependent first normal stress coefficient into the analysis. By decreasing the 
cone angle of the geometry, the shear rate y = Q/8, experienced by the fluid sample 
is increased at any value of the rotation rate. Since the apparent relaxation time A,(?) 
of the test fluids decreases with increasing shear rate, we show in 95.3 that the 
increasing relative importance of viscous effects for small cone angles will ultimately 
restabilize the base viscometric motion at all rotation rates. 

3.3. EfSect o f ju id  rheology 
In order to explore the sensitivity of the spiral instability to small modifications in the 
fluid rheology, tests were also conducted in each conical fixture with samples of the 
0.20 wt YO PIB/PB-H300/C14 Boger fluid. For completeness, the wavenumbers and 
wave speeds for each of the experimental conditions explored in this work are shown 
in table 2. 

In the 0.20 wt % elastic fluid, spiral instabilities only could be observed for the 6" and 
10" cones. In the 10" cone a single inward-travelling spiral (m = - 1) was again 
observed, with a wavenumber slightly lower than that calculated in the 0.31 wt Yn fluid. 
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However, for the 6" cone the instability had the form of nearly stationary axisymmetric 
cells, which were poorly defined and hard to resolve with the imaging system. Although 
it is dangerous to infer trends from only two data points, the progressive increase in 
the dimensionless wavenumber af of the spiral instability for the 0.20 wt YO fluid 
appears similar to that discussed in detail above for the 0.31 wt YO fluid. Increasing the 
solvent viscosity ratio also appears to consistently shift the elastic instability to higher 
Deborah numbers, as we have discussed previously in BOBM. 

We show below in $44 and 5 that most of these variations in the spatio-temporal 
characteristics of the instability can be explained by linear stability analysis of the 
Oldroyd-B model. Somewhat more puzzling for the 0.20 wt YO fluid data shown in table 
2 is the apparent reversal in the trend of progressively decreasing values of the critical 
Deborah number with smaller cone angles. In $45.3 and 5.4 we show that this trend can 
be explained, at least qualitatively, by considering the stability of a nonlinear 
constitutive model. 

4. Linear stability analysis 
4.1. Governing equations and base solution 

The linear stability analysis is based on the creeping torsional motion of a viscoelastic 
fluid contained between a cone and a flat circular plate, as shown in figure 1. In the 
current work, the bottom plate is held stationary and the conical fixture with included 
angle (n: - 28,) is rotated about its vertical axis with a constant angular velocity 52. The 
kinematics are described in a spherical coordinate system (+,8,$) with the origin 
located at the apex of the cone. Throughout the following development, dimensional 
variables are denoted explicitly by a caret. The inertialess governing equations for mass 
and momentum conservation in dimensional form are 

v-a = 0 (9) 

and v.a-vji = 0. (10) 
Here 2 is the velocity vector and the total extra stress is decomposed as z^ = 3 + ys y ,  
where $ is the polymeric contribution to the extra stress and is given by the 
Chilcott-Rallison constitutive model defined by (1). 

iiT(?, in - 8,, $, f) = (O,O, tf2 sin O), and a*(?, ;n, $, f) = (O,O, 0). 

The boundary conditions on the velocity field 2 are 

(1 1) 
In the absence of fluid inertia, the purely azimuthal, steady-state viscometric flow 

between a cone and a disk is given by the velocity field (Bird, Stewart & Lightfoot 1960; 
Bird et al. 1987a) 

where ln(tan 1/28) - cos 8 cosec2 8 
sin 8, '('1 = ln(tan 1/20,) -cos 8, cosec2 8, (13) 

and O1 = ;n:--8,. The corresponding components of the polymeric stress field $ = 3, 
for the Chilcott-Rallison model are 

(14) 
where g' denotes the derivative of the function g with respect to 8. The elastic hoop 
stress so$$ is determined from the equation 

1 1 A 1 1 

So,, = S O T O  = Sor$ = So, = 0; So*$ = rp Q(g'-g cot e), 
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where f ,  = (L2 + A, go44/yp)/(L2 - 3 )  describes the nonlinear force law of the 
Chilcott-Rallison constitutive model. 

Although the velocity and stress fields given by (12)-( 15) satisfy the azimuthal 
component of (lo), the r^- and 0-components of the momentum equation cannot be 
satisfied by this similarity solution. However, for small cone angles, 0, % 1, an 
approximate solution can be found (Bird et al. 1960; 1987a) by expanding g(8) in a 
Taylor series and retaining only the first term in the expansion. The velocity field for 
torsional flow in the small cone angle limit (0, % 1) is then given by 

In the limit 0, 4 1, the pressure do and the shear and normal stress components are 
given by 

d 0 = -1% df, (174 

'On4 = 71p Q/007 (17b) 

(174 
$044 = L{ 71 L2 - 1 + [ 1 + 8(h1 Q/8,)2(L2 - 3 ) / ~ 5 ~ ] " ~ } .  

2 4  
The solutions for the velocity and stress components given by (16) and (17) for the 

limit 0, 4 1 are used as the base state in the disturbance equations for the linear 
stability analysis of both the Oldroyd-B and Chilcott-Rallison constitutive models. 
Supplementary calculations for the Oldroyd-B fluid using the full solutions given by 
(12)-(15) for the azimuthal base state of the velocity field and stress components 
showed very little (d 1 YO) difference except at large Deborah numbers and cone 
angles. Giesekus (1963) and Walters & Waters (1968) have shown that the steady 
azimuthal viscometric motion described by (16) is accurate for cone angles 8, .< 10" 
(0.175 rad). For larger cone angles, the steady base motion consists of a primary 
azimuthal flow and a weak secondary toroidal motion with a magnitude that scales as - Re De, 0; which must be incorporated into a self-consistent linear stability analysis. 

4.2. Disturbance equations and solution procedure 
Equations governing the linear stability of the base flow in the transformed coordinates 
system (6,0, q5) are developed using the coordinate transformation defined in $2.3. All 
variables are made dimensionless by scaling with (P', tQ, 71, Q) for (time, velocity, 
stress) respectively. Note that in this formulation there is no characteristic radial 
lengthscale, and the velocity field at any point is scaled by r̂ Q, where r  ̂is the local radial 
coordinate. The disturbances to the velocity, pressure, and stress fields are represented 
in the form 
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where (C,, u",, C4) are the dimensionless (radial, meridional, azimuthal) components of 
the velocity field, ($,, S,,, Sr4, &,, go$, S4+) are the components of the polymeric stress, 
(ur,ue,u4) are the components of the perturbation to the velocity field, p is the 
disturbance to the pressure field, and (S,,, S,,, Sr4, So,, Ss4, S44) are the disturbances in 
the polymer contribution to the extra stress. Here uo4 is the azimuthal velocity of the 
base torsional flow, po = $,/(yo 52) is the corresponding pressure, and SOe4 = &,4/(qo 52) 
and = gon/(qo 52) are the dimensionless shear and normal stresses, respectively. 
The dimensionless groups which arise from the scaling of the velocity and stress field 
in the constitutive equation are the zero-shear-rate Deborah number, De, = h,Q, and 
the solvent viscosity ratio /3 = qs/qo. 

Substituting (18) into ( lOk(15)  and retaining only terms that are linear in the 
disturbance amplitude yields the dimensionless disturbance equations and boundary 
conditions. The continuity and momentum equations for the disturbances are 

a a 2  

ae ae2 
8-+-+cosec 

3Sr,+-+cot as,, as 3P 8S,,+-+cosec 8 A - c o t  t3S -- a& ae 84 $4 a8 

e--cosec2 O+-+cosec2 a a 2  

ae ae2 

0- - 0. (19d)  
a4 - 

The linearized components of the constitutive equations are 

au, au  uO4 cot B S r , - ~ S r o - S  2 - S o 4 4  cosec ae ae 
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HS,, - 2De So,$ cosec 8 (20 4 

ae (H + fi) So$ + De S,, ae 
au  

a$ 
-DeS,$$cosec 8 2 - c o t  8 u  

ae 

where the operators H( .) and A( .) are defined by 

H(*) = 1+De 

- 
H(.) - 

The dimensionless polymeric contribution to the viscosity is written as p p  7 (1 -/I) and 
the modified or 'apparent' Deborah number in the disturbance equations is defined by 
De = Deo/fo. Since f, 2 1 for all finite extensibilities L, the nonlinearities in the 
constitutive model serve to reduce the relative importance of the destabilizing 
viscoelastic terms in the disturbance equations by decreasing the modified Deborah 
number. 

The boundary conditions on the disturbance velocity are 

u'([ ,B,$, t )=O at 8 = $ - O o  and O = $ .  (21) 

Note that because of the coordinate transformation, (19) and (20) are separable in 
6- and $-coordinates. In contrast to the linear stability analysis for the viscoelastic flow 
between the parallel rotating disks described previously by Oztekin & Brown (1993) 
and BOBM, the restriction of localizing disturbances to a fixed radial location is not 
required. The spatial dependence of each disturbance equation can be separated, and 
in fact becomes independent of 6, if the disturbances in (19) and (20) are decomposed 
in the normal mode representation A(@ exp(iaf c+ im$ + at), where the constants are 
defined after (3), and A(0) is a complex amplitude function that satisfies the boundary 
conditions at the upper and lower plates. 

For the Oldroyd-B model, we follow the Galerkin/Chebyshev method described by 
Oztekin & Brown (1993) for the viscoelastic flow between rotating coaxial parallel 
disks. Substituting this form into (19) and (20) and eliminating the pressure and stress 
components from 19(bk19(d) using 19(a) and (20) yields a set of equations which can 
be represented in the form 

pn ( 1 ank(af,  m, DeO, 60, p) Dk V, bnj(tL.69 Dee, 60, P) DO = 0, (22) 
n=O k=O j=O 

2 

j = O  
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where D = d/d8, P = [1+ De (T + im Deg(8)lsin 81, and G(8) is the amplitude of the 
meridional (8) component of the velocity. The function w(0)  is defined as w(0)  = 
ia, q-imUg = a ( 8 )  - q, where a(8)  is the 8-component of the vorticity and U&8) and 
q(8) are the amplitudes of the 6- and 8-components of the disturbance velocity, 
respectively. For small values of the cone angle, a scaling analysis shows that w(8)  
approximates the amplitude of the 8-component of the disturbance vorticity. Equations 
(22) and (23) are similar to those for the viscoelastic flow of an Oldroyd-B fluid between 
parallel rotating disks (Oztekin & Brown 1993). Details of the coefficients anj(ag, m, De,, 

from the authors. The boundary conditions on the linear stability problem are 

U , ( ~ R )  = DV,(&) = w($T) = 0, (24 a-c) 

and &(in - 8,) = D &(in: - 8,) = w($ - 8,) = 0. (2 5 a-c) 

Equations (22)-(25) describe an eigenvalue problem for the growth rate (T and the 
eigenfunction, composed of &(8) and w(8), as a function of the spatial wavenumbers 
(af, m), and the dimensionless parameters (O,, p, De,). This eigenvalue problem is solved 
by using a Galerkin/Chebyshev approximation. The details of the numerical technique 
are described by Oztekin & Brown (1993). 

For the nonlinear Chilcott-Rallison constitutive model, the mixed Tau-Galerkin/ 
Chebyshev method is used to solve the eigenvalue problem. Rather than eliminating 
the stress components from the momentum and constitutive equations as for the 
Galerkin/Chebyshev method discussed above, the polymeric stress components are 
discretized using Chebyshev polynomial expansions. The details of this more general 
method are given in BOBM. 

The Galerkin/Chebyshev and mixed Tau-Galerkin/Chebyshev procedures reduce 
the system of equations and boundary conditions to generalized matrix eigenvalue 

'0, p), bnj(a,, De07 p), cnj(a,, De07 '0, p) and dnj(a,> m> De,> ' 0 ,  p) are 

problems of the form 
(A+aB)x = 0, (26) 

where x E 'WN+') are the components of the discretized eigenvectors and the elements 
of the square matrices A and B each in % 8 ( N + 1 ) X 8 ( N + 1 )  depend on the set of disturbance 
parameters (a,, m, L, De,, p). The solutions of the eigenvalue and eigenvectors of the 
algebraic problem (26) are computed using the algorithm DGVCCG available in the 
IMSL library. 

The stability of the viscometric flow is characterized for given De, and m by neutral 
stability curves of 8, = 8,(af) for which Re(g) = 0. These curves are determined by 
computing the growth rate (T for fixed values of (ag, m, L, De,) at several values of the 
cone angle 8, and subsequently using bisection to determine the critical value Oocrit(af). 
These searches are carried out to one part in lo6 for axisymmetric disturbances 
(rn = 0) and to one part in lo4 for non-axisymmetric disturbances (rn =l= 0). The 
eigenvalues computed for the Oldroyd-B model by either the Galerkin or mixed 
Tau-Galerkin/Chebyshev methods are identical to at least one part in lo5. 

5. Linear stability results 
Stability calculations using the Oldroyd-B and Chilcott-Rallison constitutive 

models are reported for torsional flow between a rotating infinite cone and stationary 
plate. Axisymmetric (m = 0) and non-axisymmetric (m =I= 0) disturbances are 
considered primarily for the specific solvent viscosity ratio of p = 0.59 corresponding 
to the value determined for the 0.31 wt% PIB/PB/C14 Boger fluid used in the 
experiments described in Q 3. Representative calculations for additional values of the 



144 G. H .  McKinley, A .  Oztekin, J .  A .  Byars and R. A .  Brown 

viscosity ratio in the range of 0 < /? < 1 are also discussed briefly. Stability calculations 
with the Oldroyd-B constitutive model are continued up to De, = 3, in order to fully 
explore the variation of the temporal and spatial characteristics of the instabilities with 
Deborah number. However, computations for the Oldroyd-B model beyond De, - 2 
may not be reliable because the critical cone angle for onset of the instabilities becomes 
greater than 10" and the assumption of a purely azimuthal base flow becomes invalid. 
Similarly, stability calculations for the Chilcott-Rallison model are limited to critical 
cone angles less than 15". For this model, this limit corresponds to Deborah numbers 
and dumbbell extensibilities in the range 0 < De, < 7 and 10 < L < co respectively. 

5.1. Elastic instability in the Oldroyd-BJEuid 
Since the linearized stability problem ((22k(25)) is very similar to the one discussed in 
BOBM we do not present our studies of the spectral convergence of the most unstable 
eigenmode in detail here. As was found in our previous calculations (Oztekin & Brown 
1993) for the viscoelastic flow between rotating parallel disks, non-axisymmetric 
disturbances with larger values of m require higher spectral resolution. The spectrum 
of the discrete eigenvalue problem for the non-axisymmetric disturbance flow consists 
of eight continuous branches and a discrete branch. The eigenvalues of the continuous 
spectrum converge slower than the eigenvalues of the discrete spectrum. The 
calculations reported in the remainder of this work are based on the values of the 
discretization, N ,  for which the most unstable mode in the discrete spectrum is 
convergent to one part in lo4 and all of the eigenvalues belonging to the continuous 
part of the spectrum are stable. 

The neutral stability curves computed for axisymmetric (m = 0) disturbances with 
= 0.59 are shown in figure 9 for Deborah numbers in the range 0.5 < De, < 3. 

The critical parameter R*(a5) = l/O,(a,) plotted on the ordinate is analogous to the 
dimensionless critical radial position R* = tCr i t /H defined in BOBM for the parallel- 
disk geometry, where f C r i t  denotes the dimensional onset radius of the instability and 
His  the gap between the plates. The neutral stability curves in this paper are presented 
in terms of the geometric parameter R* = 1 / O ,  to facilitate the comparison between the 
parallel-plate and cone-and-plate calculations. For any value of De,, there is a 
minimum critical value of the parameter R* which we denote by R:rit(a,crit), or 
equivalently a maximum critical cone angle Oocrit(afcrit) that corresponds to the onset 
of the elastic instability. For R* < R:rit(agcrit), or equivalently 8, > 80crit(afcrit), the 
viscometric flow is stable for all values of the wavenumber a,, whereas for R* > 
R:Cit(agCrit), or 0, < 8ocrit(a5crit), the flow is unstable to disturbances in some range of 
a,. Decreasing the Deborah number De, raises the stability locus R:rrit(a5, De,), making 
the flow more stable in the sense that instability starts at a smaller cone angle, or a 
higher value of the shear rate 

From figure 9 it is also seen that the most dangerous wavenumber a, in the 
transformed domain ( [ ,8 ,  $) increases with decreasing De,, and is always much larger 
than the values 3 < a < 4 determined in BOBM for the parallel-plate instability. The 
'wiggles' observed on the high-a, side of each neutral curve arise from a switching in 
the value of the most unstable discrete eigenmode. A very similar behaviour is observed 
in the stability curves for viscoelastic flow between parallel plates (cf. Oztekin & Brown 
1993, figure 3). 

Non-axisymmetric disturbances correspond to Archimedean spirals in the trans- 
formed domain ([,8,$) and thus have a representation similar to the non- 
axisymmetric disturbances between parallel rotating disks analysed in BOBM. The 
neutral stability curves R* = R*(a5,m) = 1/8, for /? = 0.59 and two representative 

= l2/8,. 
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FIGURE 9. The neutral stability curves R* = l/O,(c(J computed for axisymmetric disturbances (rn = 0) 
to the Oldroyd-B model with /3 = 0.59, for Deborah numbers in the range 0.5 < De, < 3.0. 

Deborah numbers, De, = 1 and 2, are shown in figure 10 for - 5 d m d 5.  The neutral 
curves and critical cone angle for the outward-winding (positive angle) and inward- 
winding (negative angle) spirals are almost the same for each value of De,, as found 
previously by BOBM. At De, = 2, the lowest value of R* = RXit(alcrit,m) occurs 
for the non-axisymmetric modes (m = &2), corresponding to a spiral winding 
number of ncrit = f 0.02. The differences between the critical values of the parameter 
R:,it(aSerit,m) are very small for the m = 0 and m = f 2  modes, but slightly larger 
between the m = - 1 and m = 0 or m = - 2 modes. The most dangerous wavenumbers 
aterit for the m = 0 and m = -2 modes are approximately the same, while the critical 
wavenumber for the m = - 1 mode shifts to a larger value. Decreasing the Deborah 
number to De, = 1 shifts the relative ordering of the different modes and the critical 
disturbances are non-axisymmetric spirals with m = f4 as shown in figures 1O(c) and 
lO(d). 

Again it can be noted that lowering the Deborah number increases the critical 
wavenumber alerit and decreases the critical cone angle OOcrit for onset of instability. To 
see that this change corresponds to an increase in the stability of the base torsional 
shear flow it is beneficial to introduce another dimensionless group, the Weissenberg 
number. This parameter represents the dimensionless ratio of the elastic normal stresses 
(so$$) to twice the polymeric shear stress (goo$) in the base shearing flow (Bird et al. 
1987a; Larson 1992); for the Oldroyd-B model, the Weissenberg number We is thus 

(27) 
and increases linearly with increasing shear rate. Using this definition, it is easily seen 
that even though the Deborah number decreases by a factor of two from figure 10(a) 

We  = A, j = (De,/O,) = De, R*, 



146 G. H .  McKinley, A .  Oztekin, J .  A .  Byars and R.  A .  Brown 

15 

5 
0 10 20 30 40 50 

015 

40 

35 

25 

20 
50 100 150 

016 

-4 -2 0 2 4 
m 

m 

FIGURE 10. The neutral stability curves for non-axisymmetric disturbances of spiral form to the 
homogeneous base torsional flow of the Oldroyd-B model: (a, b) Ordering of the neutral stability 
envelopes R*(aS, m) = 1 /@,(aS, m) for azimuthal modes with rn = 0, - 1,. . . , 5  at Deborah numbers of 
De, = 2 and 1 respectively. (c, d ) .  The critical cone angle (OOcrit), represented in terms of the parameter 
R,*,, = l/OOcrit(aScrrt), for onset of instability for azimuthal modes with - 5  < m < 5 at the same 
Deborah numbers. 

to lO(b), the critical Weissenberg number for onset of instability, We,,,, = De, Rzrit, 
increases - indicating a higher critical shear rate for onset of the elastic instability. 

Contours of the eigenfunction corresponding to the magnitude of the meridional 
disturbance velocity U, in the (t, @-plane are shown in figure 11 over the period of one 
wavelength for both the axisymmetric (m = 0) and the m = k4 non-axisymmetric 
disturbances. These eigenfunctions are computed for the critical values of the cone 
angle /30erit(~S,rit)  calculated at De, = 1 for each mode with p = 0.59. The eigenfunction 
structures are again very similar to those computed in our earlier work for torsional 
flows between rotating parallel disks. The velocity eigenfunction for the axisymmetric 
disturbance is symmetric about the midplane, Om,+ = i(n - O,), between the cone and 
plate, whereas the non-axisymmetric velocity eigenfunction is skewed in the t- 
direction. The maximum amplitude of the axisymmetric disturbance velocity is 
obtained at the midplane while the non-axisymmetric velocity disturbances have 
maxima closer to the stationary plate for the m = 4 mode and to the rotating cone for 
the complementary m = -4 mode. 
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FIGURE 1 1 .  Contours of the eigenfunctions describing the disturbance to the meridional velocity U, 
with p = 0.59 and De, = 1 for (a) the axisymmetric mode (m = 0), (b) the positive-angle m = 4 mode 
and (c)  the negative-angle m = - 4 non-axisymmetric disturbance mode. 

Extensive calculations for different values of the solvent viscosity ratio, /3, have been 
performed in order to systematically explore the effects of rheological variations on this 
elastic cone-and-plate instability. These calculations show that the precise ordering of 
the azimuthal mode structure and the critical rotation rate for onset of instability are 
very sensitive functions of the magnitude of the solvent viscosity. These results are 
concisely summarized in figure 12, where the variation in the critical value of the cone 
angle for the onset of the axisymmetric and the most dangerous non-axisymmetric 
disturbances is plotted in terms of the critical Weissenberg number We,,, = 
DeO/OOcrit(aSerit) for Deborah numbers in the range 0.5 < De, 6 2. The mode number 
of the most dangerous non-axisymmetric disturbance varies with the critical cone 
angle, and the value of m corresponding to the most unstable mode at each set of 
conditions is shown in figure 12(b). In the linear analysis, the critical conditions for 
positive- and negative-angle spirals are approximately the same at each point and are 
represented in terms of the magnitude Merit = \mertt). For each value of De,, the 
axisymmetric disturbances are the most dangerous for solvent viscosity ratios above 
0.6; below this value, non-axisymmetric disturbances are most unstable and the 
azimuthal wavenumber increases as the Deborah number decreases. For the value 
/3 = 0.59, the non-axisymmetric disturbances are the most dangerous but the spacing 
between different modes is very small. As the solvent contribution is reduced towards 
the limit of an Upper-Convected Maxwell model (J = 0), the differences in the values 
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FIGURE 12. Variation with solvent viscosity ratio of (a) the critical Weissenberg number We,,,(P) for 
the onset of the axisymmetric (-) and the most dangerous disturbance (----) modes, and of (b) 
the magnitude of the azimuthal mode number corresponding to the most dangerous disturbance 
Mcrt@) for De, = 0.5, 1 and 2. 
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FIGURE 13. Stability diagram for spiral instabilities in torsional flow of the Oldroyd-B model between 
a cone and a plate, p = 0.59; (a) the critical Weissenberg number We,,, for the onset of both 
axisymmetric (-) and the most dangerous (0) disturbance modes, and (b) the azimuthal mode 
number, Mc,it(De,,), corresponding to the most unstable disturbance. 

of the critical Weissenberg number for the axisymmetric and the most dangerous non- 
axisymmetric modes becomes more appreciable. In the Newtonian limit, P-. 1, the 
critical Weissenberg number for onset of instability approaches infinity, i.e. the base 
flow becomes stable for all disturbances, as expected for creeping torsional motion of 
a Newtonian fluid. 

A stability diagram for the torsional flow of an Oldroyd-B fluid in cone-and-plate 
geometries with different cone angles can be constructed from a series of calculations 
for each value of the solvent viscosity ratio p. The variation of We,,,, = Deo/Oocrit with 
Deborah number is shown in figure 13 for both axisymmetric and the most dangerous 
non-axisymmetric disturbances. The axisymmetric disturbance is never the most 
unstable; however, the difference in the critical cone angle (or critical Weissenberg 
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number) for axisymmetric and most dangerous non-axisymmetric modes is very small 
for all De,. The integer value of Merit = lmeritl that corresponds to the most dangerous 
disturbance is plotted in figure 13(b) as a function of De,. As the Deborah number is 
decreased, the critical Weissenberg number increases and non-axisymmetric dis- 
turbances with higher values of m become progressively more unstable. 

For the purpose of completeness, it is also worth considering the location on such 
a diagram of the Phan-Thien stability boundary for axisymmetric disturbances of von 
Karma, similarity form, calculated using the corrected expression given by Olagunju 
& Cook (1993). This analytic stability criterion depends on the solvent viscosity ratio 
p in the Oldroyd-B model but unlike the analysis presented here is independent of the 
cone angle 0,. The neutral stability curve will thus be a vertical line, and for a fluid with 
/3 = 0.59 and Re + 1 the critical Deborah number is calculated to be DeLFz) = 3.55. In 
experiments with a viscoelastic fluid that is accurately modelled by the Oldroyd-B 
constitute equation, instabilities of spiral form will therefore be the more unstable 
modes of disturbance unless the Weissenberg number is kept rather small. This 
corresponds to large values of the cone angle (0, z 25"), and it is not clear whether the 
purely azimuthal base flow considered by either analysis is valid at such conditions. 

5.2. Comparison of Oldroyd-B calculations with experiments 
In this section we present a quantitative comparison of the predictions of the linear 
stability calculations using the Oldroyd-B model with our experimental observations in 
the 0.31 wt% PIB/PB/C14 Boger fluid. The critical value of the wavenumbers at = 
agcrit(Bo) and ct = cterit(Bo) determined from experiments and predicted by linear 
stability analysis for the axisymmetric (m = 0) and non-axisymmetric disturbances 
with m = - 1, -2 and -3 are shown in figure 14. As the cone angle decreases, the 
wavenumber steadily increases, and the experimental observations and numerical 
calculations for the critical wavenumber are in excellent quantitative agreement. 
Additionally, the calculations show that the values of the critical wavenumber of each 
mode are similar for all cone angles and also that these values become very large as the 
cone angle approaches zero. The measured and calculated values of the radial wave 
speed of the disturbance also agree well for the smallest cone angle of 0, = 6"; however, 
for larger cone angles the wave speed of the logarithmic spirals observed in experiments 
is smaller than the predicted value for any mode. This discrepancy at larger cone angles 
might be expected since both our experimental and numerical assumptions of a purely 
azimuthal base flow become inaccurate for cone angles beyond 0, > 10". The linear 
stability analysis also predicts that the concentric waves (m = 0) travel faster than the 
non-axisymmetric m = - 1, -2 and - 3 logarithmic spirals and that the wave speed of 
the recirculating vortices decreases as the cone angle is progressively reduced. 

The Oldroyd-B model thus appears to provide an accurate description of the spatial 
form of the elastic instability in cone-and-plate flows. However, in the previous work 
of BOBM and Oztekin & Brown (1993) it was noted that under the typical flow 
conditions attained at onset of these elastic instabilities, Boger fluids actually exhibit 
shear-rate-dependent material properties; most notably, the first normal stress 
coefficient !PI(?) decreases monotonically as a function of increasing shear rate. 
Construction of an experimental stability diagram and quantitative comparison of 
critical flow conditions at the onset of the elastic instability therefore requires the 
definition of an appropriate relaxation time for the test fluid. The Oldroyd-B fluid 
model of course does not predict any shear-rate dependence in the viscometric 
properties; however, an ad hoc comparison between experiments and linear stability 
calculations can be effected by defining an 'apparent relaxation time' (McKinley et al. 
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FIGURE 14. Comparison of experimental measurements and predictions from linear stability 
calculations with the Oldroyd-B model (J3 = 0.59) for (a) the dimensionless wavenumber at, and (b) 
the dimensionless wave speed cg. 
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FIGURE 15. Stability diagram for the onset of the elastic instabilities in a cone-and-plate rheometer 
in terms of the shear-rate-dependent critical Weissenberg number : , present experiments with 
0.31 wt % PIB/PB/C14 Boger fluid; 0, earlier experiments for M1 Boger fluid; -, most unstable 
mode predicted by linear stability analysis with Oldroyd-B model (J3 = 0.59). 

1991; Larson, Muller & Shaqfeh 1993) as A,(?) = YI(?)/2[7(?)-7J. In this fashion, 
the actual values of the viscosity and first normal stress coefficient for the fluid are used 
to construct a new, Oldroyd-like time constant locally at each value of the shear rate 
in the steady base state. This definition has the correct zero-shear-rate asymptote given 
in table 1 and, because we are only concerned with linear stability calculations 
involving infinitesimal perturbations about the base state, we may expect spatial 
variations in the apparent relaxation time of the fluid sample to be very small at onset 
of instability. 

A direct comparison of the experimentally determined and numerically predicted 
stability diagram for onset of the elastic spiral instability in cone-and-plate rheometers 
is presented in figure 15. The shear-rate-dependent relaxation time A,(?) is used to 
calculate an ‘apparent critical Deborah number’ DeCri,(P) = A,(?) Qcrit and an 
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‘ apparent critical Weissenberg number’ We,,&) = [De(~)/80]erit  for onset of 
instability in the Boger fluid, and these values are compared with linear stability 
calculations for the most unstable disturbance mode predicted using the Oldroyd-B 
model with p = 0.59. This critical Weissenberg number corresponds to either the 
critical dimensionless shear rate that must be achieved for onset of instability in a series 
of experiments with a fixed conical fixture, or alternatively to the critical cone angle 
that must be used in linear stability calculations at a fixed Deborah number. 

In addition to our own observations with the 0.31 wt% PIB Boger fluid, we also 
indicate by hollow circles in figure 15 similar data extracted from the recent rheological 
studies of the ‘Ml ’  international test fluid (Hudson & Ferguson 1990; Laun & 
Hingmann 1990; Steiert & Wolff 1990). This is another polyisobutylene-based Boger 
fluid containing 0.244 wt YO PIB in polybutene and kerosene, with a similar value of the 
solvent viscosity ratio pM1 = 0.52 (Laun & Hingmann 1990). In these earlier studies 
using cone-and-plate rheometers with cone angles in the range 1 ”  < 8, < 4” the flow 
instability was interpreted in terms of a ‘critical shear stress ’ for structure formation. 
No information was given about the spatial and temporal characteristics of the 
instabilities observed in the ‘M1 ’ fluid; however, it appears likely that the instability 
is identical to the travelling logarithmic spiral vortices observed in the current 
investigation and is better interpreted in terms of a critical Deborah number. It is clear 
from figure 15 that the agreement between the experiments and theory for the 
prediction of onset of the elastic cone-and-plate instability is good for both our 
PIB/PB/C14 fluid and the ‘Ml’  Boger fluid. 

5.3. Linear stability of the Chilcott-Rallison constitutive model 
Although the above discussions have shown that linear stability calculations with the 
Oldroyd-B constitutive equation capture the correct spatial form of the disturbance 
kinematics observed in our Boger fluid experiments, a number of experimental 
observations indicate that the physics contained in this model are insufficient to fully 
describe the elastic instability. Most notable of these include the absence of instability 
observed in experiments with a 4” cone up to De, = 8.31 (cf. table l), and the necessity 
of adjusting the experimental measurements using the concept of an ‘apparent 
relaxation time’ (55.2). In BOBM we showed that similar effects in the parallel-plate 
geometry can arise from shear thinning of the elastic normal stresses in the 
experimental test fluids. We therefore proceed in the same manner and consider the 
stability of the Chilcott-Rallison model (equation (1)) to linearized disturbances of 
logarithmic spiral form. 

Although the base state shear rate, i. = 52/8,, in the cone-and-plate geometry is 
uniform throughout the device, the destabilizing elastic hoop stress in the Chilcott- 
Rallison model is a nonlinear function of the shear rate (cf. 17(c)) and increases 
at a slower rate than the quadratic variation predicted by the Oldroyd-B constitutive 
equation. At a fixed value of the zero-shear-rate Deborah number De, and large shear 
rates (i.e. for very small cone angles), the elastic hoop stress sop$, and therefore the 
dimensionless Weissenberg number, predicted by the nonlinear model is smaller than 
that given by the Oldroyd-B model. The extent of the shear thinning in the elastic 
stresses increases as the dumbbell extensibility L is decreased, and the ‘apparent 
Deborah number’ De = Deo/fo in the disturbance equations (2) is progressively 
decreased. This variation has a pronounced influence on the neutral stability curves 
and stability diagrams presented below. 

The neutral stability curves R*(aJ =_ l/8,(aC) for axisymmetric disturbances (m = 0) 
of the Chilcott-Rallison model with a solvent viscosity ratio of ,8 = 0.59 are shown in 
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FIGURE 16. Neutral stability curves for axisymmetric disturbances to the Chilcott-Rallison model 
with /3 = 0.59 and for various values of the dumbbell extensibility parameter L at (a) De, = 1 ,  
(b)  De, = 3. 
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FIGURE 17. Neutral stability curves for non-axisymmetric disturbances to the Chilcott-Rallison 
model at De, = 3 for /3 = 0.59 and (a) m = - 1, (b) m = -2 .  

figure 16 for a range of representative values of the extensibility parameter L. The solid 
curve in each plot represents the neutral stability curves in the Oldroyd-B fluid limit 
(L-tco) that have been discussed above in $5.1. The characteristics of the neutral 
stability curves for the Chilcott-Rallison model are very different; the locus of neutrally 
stable points (i.e. where Re(a) = 0) forms a closed loop, and hence the viscometric 
base motion is only unstable for a finite range of cone angles Ooc7it,(a5crit) > Oo > 
Oocrit,(afcrit,) at each value of the extensibility parameter L. The values ok R,*,it, = 
l / O O c r i t ,  and R,*,itz = l / O O c r i t ,  are, respectively, the minimum and maximum of each 
neutral stability curve. As L decreases and the nonlinearity in the FENE spring 
increases, shear thinning in the elastic hoop stresses becomes increasingly important 
and the unstable region becomes progressively smaller until it eventually disappears 
completely below a critical value of the extensibility L. It can be seen from comparisons 
of figures 16(a) and 16(b) that increasing the Deborah number increases the 
destabilizing elastic stresses and a smaller critical value of L is required to restabilize 
the base flow over all values of cone angle. 
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FIGURE 18. Stability diagrams for onset of logarithmic spiral disturbances in the Chilcott-Rallison 
model @ = 0.59) with spiral mode (a) m = 0, (b) m = -2.  

Similar results are obtained by considering non-axisymmetric disturbances. The 
neutral stability curves R*(a5; m) = 1/8,(ag; m) for the azimuthal m = - 1 and m = -2 
disturbances are shown in figure 17 at a fixed Deborah number of Den = 3. There is 
again a finite range of cone angles for which the viscometric flow is unstable, and as 
L decreases this unstable range becomes smaller and disappears completely beyond a 
critical value of L. The stabilization due to the shear thinning of the elastic stresses is 
stronger for the m = - 1 non-axisymmetric disturbances than for either the m = - 2 or 
the m = 0 modes. 

Stability diagrams for axisymmetric and non-axisymmetric disturbances to the 
Chilcott-Rallison model are determined by calculating the critical cone angles at which 
the base flow is destabilized for each value of De, and L. The results of such 
calculations are shown in figure 18. In the Oldroyd-B limit ( L  -+a), a finite value of the 
critical cone angle is predicted for any non-zero value of the Deborah number. For 
large cone angles (and therefore small shear rates) the stability curves of the 
Chilcott-Rallison model closely follow the Oldroyd-B stability loci. However, the 
curves diverge as the critical cone angle decreases and shear-thinning effects in the fluid 
become increasingly important. For finite values of the extensibility L there exists a 
critical value of the Deborah number (corresponding to the turning point in each of the 
curves plotted in figure 18) below which the base flow is stablefor all cone angles. For 
De, > DeOcrit, the base flow is unstable over the finite range of cone angles OOerzt > 
8, > OOerit,, but at lower values of the Deborah number, the base torsional mot:on 
between a plate and a cone of any angle is stable to all axisymmetric and non- 
axisymmetric disturbances of spiral form. Of course, this is subject to the important 
caveat that the purely azimuthal base flow is a valid approximate solution to the 
inertialess equations of motion. This requires that 8, < 100 (0.173 rad), or equivalently 
R* > 5.7. 

The value of Deoerit increases and the range of unstable cone angles shrinks for both 
the axisymmetric and non-axisymmetric disturbances as the extensibility L is decreased. 
At large Deborah numbers the variation in the upper stability boundary R,*,it2 = 

with De, is weak for all values of L and m, since the rate of shear thinning in 
the normal stresses asymptotically approaches y-'. Increasing the Deborah number 
thus results in almost no change in the destabilizing elastic stresses predicted by the 
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Chilcott-Rallison model. A similar result was obtained in BOBM for the elastic 
parallel-plate instability. 

Although it is difficult to discern from figure 18, a detailed comparison of the 
stability boundaries for different values of L and m shows that for p = 0.59 the 
axisymmetric mode is never the most unstable for any dumbbell extensibility L < 50; 
however, the difference in the critical cone angle for the axisymmetric and non- 
axisymmetric disturbances is very small. Changing the solvent viscosity ratio results in 
a reordering of the disturbance modes, as we found previously for the Oldroyd-B 
model (cf. figure 11). For /3 = 0.84 we find that the axisymmetric mode is the most 
unstable for all values of the Deborah number and the dumbbell extensibility. The 
stability boundaries exhibit the same general shape as those shown in figure 18 with a 
turning point corresponding to a minimum critical Deborah number for onset of the 
elastic instability. However, as the contribution of the stabilizing Newtonian solvent 
viscosity increases, the overall stability of the purely azimuthal flow increases with 
respect to both axisymmetric and non-axisymmetric disturbances for all values of L, 
and the stability boundaries shift to the right, corresponding to larger values of the 
Deborah number. 

5.4. Comparison of Chilcott-Rallison model stability calculations with experimental 
observations 

In order to compare our experimental observations with linear stability calculations it 
is first necessary to choose an appropriate value of the dumbbell extensibility L. As we 
have discussed above in 0 2.2 this parameter is best ascertained from extensional 
viscosity measurements; however, in the absence of such data we resort to fitting the 
shear-rate dependence of the first normal stress coefficient Y,(.>') for the 0.31 wt % PIB 
Boger fluid. Nonlinear regression results in the best fit value of L z 15 given in table 
1. However, calculations with such a small value of L result in growth of spiral 
instabilities only at very large values of De, (cf. figure 17). Recent birefringence 
measurements in extensional flows through packed beds (Evans, Shaqfeh & Frattini 
1994) suggest that the molecular extensibility of the PIB molecules in a Boger fluid is 
actually considerably larger than the value obtained from only considering the weak 
shear-rate-dependent variations in the viscometric properties, and values in the range 
30 < L < 100 are typically obtained for the extensibility of the dumbbells in the 
Chilcott-Rallison constitutive model. In the comparison presented below, we find 
numerical stability calculations with values of L = 30 and L = 50 best describe the 
experimentally measured critical conditions for the 0.31 wt % PIB and 0.20 wt % PIB 
fluid respectively. This discrepancy between experimental and numerical values of the 
nonlinear parameter L is to be expected considering the limitations inherent in 
describing a polydisperse semidilute polymer solution with a single-mode FENE 
dumbbell model. A more accurate comparison of experimental observations with 
linear stability analysis for a multimode nonlinear viscoelastic constitutive equation 
has recently been presented by Oztekin, Brown & McKinley (1994). 

A composite stability diagram for comparison of experimental observations and 
numerical calculations of the cone-and-plate instability in each fluid can be constructed 
in several ways. The numerically determined critical cone angles for the most unstable 
azimuthal mode can be plotted as a function of the Deborah number De,, as we have 
shown earlier in figure 18. However for consistency with the earlier work of McKinley 
et al. (1991), and our previous comparison with the Oldroyd-B model (cf. figure 15) we 
choose to present the stability diagram here in terms of the critical Weissenberg 
number Weerit = A, SZ/Oocr i t (~6er i t ,  merit) as a function of the zero-shear-rate Deborah 



Spiral instabilities in elastic flows between a cone and plate 155 

120 L-t:, I T  I ,  I I I I ,  I I I I ,  I I , ,  , I I I I ,  I I I 1  

: (4 0 

0 

0 O@* 1 
0 

L=30 

+ 
II 

40 0 0  

, =50 

0 1 2 3 4 5 6 7  0 2 4 6 8 1 0  
De,= A I Q  De,= RIG? 

FIGURE 19. Comparison of experimentally determined and numerically calculated stability diagrams 
for onset of spiral instabilities between a cone and a plate in Boger fluids with solvent viscosity ratios 
of (a) p = 0.59 and (b) = 0.84. In each figure symbols indicate experimental measurements of steady 
(0) or unsteady (0)  base flow, dashed lines indicate predictions of the Oldroyd-B model with 
appropriate value of /3, and solid lines indicate predictions of the Chilcott-Rallison model with 
indicated value of L. 

number De,, for the appropriate values of the solvent viscosity ratio, /3 = 0.59 and 
/3 = 0.84 respectively. In this parameter space, sets of experimental data points with a 
given conical fixture thus describe straight lines extending from the origin with slope 
1 /Bo .  Experimental measurements in each fluid corresponding to stable and unstable 
base flow are marked in figure 19 by open and closed circles, respectively. For 
comparison, the predictions from the linear stability analysis for the most dangerous 
azimuthal disturbances are also shown in figure 19 for both the Oldroyd-B limit 
(L-too) and for the nonlinear Chilcott-Rallison model with a value of L that best fits 
the experimental data. 

In contrast to the comparison presented previously in figure 15, there is no ad hoc 
adjustment in the relaxation time made here and each figure represents a direct 
comparison. The experiments in the 0.31 wt % PIB Boger fluid @ = 0.59) indicate that 
the critical Deborah number, below which no instability is seen, is Deocrit w 4.25 and 
also show that for small cone angles (6, < 4") the base flow is stable for all values of 
rotation rate experimentally achievable in our experimental device. Also shown for 
completeness on this figure are additional experimental measurements performed 
earlier in a standard rheometer (McKinley 1991) using a conical fixture with B,, = 2.54" 
(0.04 rad). These observations are in sharp contrast to the predictions for the Oldroyd- 
B model, which is qualitatively incorrect and predicts Deocrit + 0 for W e  9 1.  The 
experimental observations and the linear stability calculations for the Chilcott-Rallison 
FENE dumbbell model with L = 30 and /3 = 0.59 are not in quantitative agreement; 
however, the general characteristics are correct. The predicted value of the critical 
Deborah number is DeOcrit z 3.75 which is close to the value determined by 
experiments. The analysis also predicts that the viscometric flow is stable to all 
disturbances for all cone angles below about B,, z 4.7" (0.08 rad). 

The stability diagram shown in figure 19(b) also provides an explanation for the 
initially puzzling observation discussed in 53.3 of a large increase in the critical 
Deborah number required for onset of instability in our experiments with the 
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0.20 wt YO fluid in the 6" geometry. The increase in the solvent viscosity ratio, p, shifts 
the neutral stability curve for onset of spiral disturbances to higher Deborah numbers, 
and the locus of points in We-De, parameter space that are accessible with a 6" conical 
fixture now intersects the neutral stability curve in the region where shear-thinning 
effects in the normal stress result in increasing stabilization of the base azimuthal flow. 
A more extensive series of experiments with a large number of different conical fixtures 
would allow us to map out the experimental stability boundaries with even greater 
precision; however, it is clear that the nonlinear constitutive model is capable of 
describing the key features of the stability diagrams obtained in cone-and-plate 
experiments with Boger fluids. 

6. Discussion 
The overall pictures of the purely elastic spiral instability in a cone-and-plate 

rheometer observed by experiments and predicted by a linear stability analysis are in 
good agreement. Flow visualization experiments with two PIB/PB/C14 Boger fluids 
reveal the development of a secondary flow with the spatial form of logarithmic spirals 
that propagate radially inward across the gap. There is no preferred radial location at 
which this instability initially develops and spiral vortices are observed throughout the 
fluid sample. These video-imaging observations are consistent with the predictions of 
linear stability analyses for both the Oldroyd-B and Chilcott-Rallison constitutive 
models with appropriate choices of the solvent viscosity and dumbbell extensibility. 
For a range of cone angles and Deborah numbers, the homogeneous azimuthal 
shearing motion between the cone and plate is found to be unstable and the most 
linearly unstable modes have the form of logarithmic spiral vortices travelling either 
radially inward or outward. Disturbances of this form are found to be self-similar and 
independent of the radial coordinate r", hence there is no particular radial location or 
region within which the disturbances are confined. Both the axisymmetric and non- 
axisymmetric spiral vortices are found to have very similar critical onset conditions for 
a solvent viscosity ratio of /3 = 0.59. 

The spatial characteristics of the instability calculated with the Oldroyd-B model 
agree well with the experimental measurements (cf. figure 15). Both the video-imaging 
observations and the numerical calculations show that the radial spacing of the 
travelling spiral vortices becomes smaller for small values of the cone angle and that 
the azimuthal mode number increases. Stability analysis for both axisymmetric and 
non-axisymmetric disturbances shows a similar weak geometric variation of the critical 
wavenumber at for cone angles in the range of 6" < 8, < 15". However, the predicted 
value of the critical wavenumbers of all disturbances sharply increases for smaller 
values of the cone angle 8,, < 5"; therefore, the winding number Itcrit  = -m/agcrit for 
the logarithmic spirals approaches zero as 8,+0". As a result, in this limit, the 
logarithmic spirals will closely resemble concentric axisymmetric waves. In order to 
observe the non-axisymmetric structure of the secondary flow, it is thus critical to 
observe the entire planform of the flow geometry. 

The predictions of the temporal behaviour of the instabilities are also consistent with 
experiments, although the quantitative agreement is less satisfying than for the spatial 
characteristics. Experimental observations clearly show logarithmic spiral vortices that 
travel radially inward with a dimensionless wave speed of -0.015 < cg < -0.007 for 
different values of the cone angle. The predicted values of wave speed for the 
axisymmetric and non-axisymmetric disturbances are indicated in figure 14 (b) and 
vary between -0.027 < c5 < -0.008 for the range of cone angles 6" < 8, < 15". As the 
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cone angle approaches zero, the wave speeds for each azimuthal mode also approach 
zero and the disturbances become almost stationary. 

The stability boundaries for purely azimuthal motion in a cone-and-plate rheometer 
that have been determined experimentally with highly elastic constant-viscosity fluids 
in a number of previous investigations can be accurately predicted using this Oldroyd- 
B linear stability analysis only if the single relaxation time constant A, in this 
quasi-linear model is adjusted to include the shear-rate dependence of the first normal 
stress coefficient actually observed in the experimental test fluids. However, the 
stability predictions obtained using the quasi-linear Oldroyd-B constitutive model do 
not capture all features of this elastic instability. Experiments show that there is a range 
of cone angles for which no elastic instability is observed. Even with the ad hoc 
incorporation of shear thinning via an ‘apparent relaxation time’ Al(y), the analysis for 
the Oldroyd-B fluid model predicts onset of instability for small enough cone angles at 
all non-zero values of the Deborah number. To describe such observations, a more 
realistic constitutive model is required in which shear-thinning viscometric phenomena 
are incorporated implicitly via more detailed consideration of the macromolecular 
conformations in polymer solutions (Rallison & Hinch 1988). 

A linear stability analysis for the Chilcott-Rallison model provides a more detailed 
description of this elastic spiral instability. Incorporating finite extensibility of the 
polymer chains does not appreciably modify the spatial and temporal characteristics of 
the disturbance at onset of the elastic instability, but it does change the stability 
boundaries for the base flow. Calculations with an extensibility parameter of L = 30 
predict a non-zero value of the critical Deborah number (below which spiral 
instabilities are not observed for any cone angle) that is reasonably close to the 
measured value of DeOerit z 4.25. The shape of the stability boundary predicted by the 
Chilcott-Rallison model is also qualitatively in agreement with the experimental data 
(cf. figure 19) without resort to a posteriori adjustment of the fluid viscometric 
properties; however, the quantitative comparison is still not perfect. The values of the 
FENE dumbbell extensibility parameters ( L  = 30 or 50) used in our comparisons for the 
0.31 wt % and 0.20 wt YO PIB Boger fluids respectively, were selected to provide the 
most reasonable description of the experimental stability data over the range of 
parameter space represented in figure 19. Such values agree well with estimates that can 
be deduced from recent uniaxial elongation studies with the 0.3 1 wt YO PIB Boger fluid 
performed by Tirtaatmadja & Sridhar (1993). However, these values are inconsistent 
with the much smaller values of L = 15 or 20 independently obtained from regression 
to our steady shear flow rheological data. The most plausible explanation for this 
discrepancy lies in the poor approximation of the single-mode constitutive models to 
the linear viscoelastic spectrum of the test fluids. Previous rheological studies of the 
viscometric properties of these Boger fluids clearly indicate a spectrum of relaxation 
times (Quinzani et al. 1990). Even in experiments with monodisperse polymer 
solutions, a larger number of relaxation modes are available for microscopic 
deformation of the polymer chains and different macroscopic viscometric tests probe 
differently weighted averages of this relaxation spectrum (Larson et al. 1994). It should 
not be expected that a simple single-mode FENE dumbbell model can capture such 
phenomena even qualitatively. A detailed stability analysis with a multimode 
constitutive model might improve the quantitative comparison between theory and 
experiments, particularly since earlier rheological studies indicate that different 
nonlinear coefficients (e.g. FENE extensibilities) are associated with different 
deformation modes (Quinzani et al. 1990). This possibility has been investigated by 
considering the stability of torsional motion between a cone and a plate with 4-mode 
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formulations of the Oldroyd-B and Giesekus models. The results of this comparison 
are described by Oztekin et al. (1994) and show excellent agreement between analysis 
and experiment. 

In the earlier work of Phan-Thien (1 985), incorporation of shear-rate-dependent 
material functions via the Phan-Thien-Tanner nonlinear network model was found to 
entirely eliminate a purely elastic cone-and-plate instability of von Kirman form that 
had been found for the Oldroyd-B model. The logarithmic spiral instability 
documented in the present work persists even when nonlinear fluid rheology is 
incorporated and thus appears to be inherent to cone-and-plate flows of many 
viscoelastic fluids. Indeed the spatio-temporal characteristics of this instability, i.e. 
spiral recirculating vortices that translate spatially at speeds much slower than the 
rotation rate of the cone, are consistent with the very early observations of Kocherov 
et al. (1973) in polymer melts and of Kulicke & Porter (1979) in shear-thinning 
concentrated polymer solutions. Very recent observations in our device with a shear- 
thinning PIB/PB/Decalin solution (the ' S 1 ' international test fluid) have confirmed 
the onset of a spiral flow instability in this fluid; however, the shear-rate-dependent 
material functions appear to amplify the nonlinear spatial mode interactions and the 
weak spiral secondary flow rapidly evolves into the fully nonlinear state characterized 
by figure 3(d) .  

The analyses for both constitutive models predict that the differences in the critical 
onset conditions between the axisymmetric and the most dangerous azimuthal modes 
are very small (see, for example, figure 14); hence it might be difficult to distinguish 
between these modes in the experiments. In fact, in the nonlinear stage of the flow 
visualization experiments, several modes including inward- and outward-winding 
spirals and the axisymmetric vortices are observed simultaneously. The precise 
ordering of the modes is also found to be a sensitive function of the solvent viscosity 
ratio and axisymmetric modes are predicted to be most unstable for values of /3 > 0.6. 
Recent observations of the cone-and-plate instability in a polystyrene-based Boger 
fluid appear to confirm the existence of axisymmetric disturbance modes (S. J. Muller 
1993, personal communication). 

The azimuthal modes predicted by the analysis are in the form of Archimedean 
spirals in the (&O,$)-transformed domain, and hence are similar to the non- 
axisymmetric disturbances predicted by BOBM for viscoelastic torsional flow between 
coaxial parallel rotating disks. However in the (i, 8, $) physical coordinate system of 
the cone-and-plate geometry these azimuthal modes represent logarithmically spaced 
Bernoulli spiral vortices. Although the number of logarithmic spirals predicted by the 
experiments and stability analysis for the Boger fluid with /3 = 0.59 is not exactly the 
same, the critical winding numbers ncrit are in close agreement. For a cone angle of 
8, = 10" and a fluid with /3 = 0.59, only a single logarithmically spaced spiral vortex is 
observed in the experiments, while a linear stability analysis predicts the m = f 2 spiral 
modes to be the most unstable disturbances. The critical value of the expansion 
coefficient n,,, is measured to be 0.047 and is calculated to be 0.046. This discrepancy 
in the prediction of the number of spiral vortices may be resolved by studying 
multimode models, incorporating the finite nature of the cone-and-plate rheometer, or 
by considering the evolution of the amplitude of the individual travelling disturbance 
modes at Deborah numbers above the neutrally stable conditions. This latter 
consideration requires weakly and/or fully nonlinear stability analysis of the three- 
dimensional time-dependent spiral disturbances. Similar analyses that are just 
beginning for elastic instabilities in the Taylor-Dean and Taylor-Couette systems 



Spiral instabilities in elastic flows between a cone and plate 159 

(Shaqfeh 1993; Sureshkumar, Beris & Avgousti 1994) suggest that both the temporal 
frequency and ordering of unstable modes are modified by nonlinear interactions. 

In our experiments very near the critical conditions for onset of the cone-and-plate 
instability we have always observed negative-angle (rn < 0) non-axisymmetric 
logarithmic spiral modes. Conversely, in the parallel-plate geometry our experimental 
observations near the critical conditions have always revealed positive-angle (rn 2 0) 
spiral modes. The linear analysis presented in this work and in BOBM, however, 
indicates that in each case both the positive-angle (rn > 0) and negative-angle (rn < 0) 
spiral modes are equally unstable. Presumably, this symmetric ordering of the 
rn = f M  modes is destroyed by consideration of nonlinear interactions in finite- 
amplitude disturbances. In the absence of a nonlinear amplitude analysis it is difficult 
to satisfactorily explain the differences between the dynamics of the two elastic 
instabilities ; however, we speculate that it may arise from the kinematic differences 
between the base-state azimuthal motions that we have considered in each geometry 
and from imperfections to these idealized one-dimensional base flows. 

In the cone-and-plate geometry, the base state motion (in the limits De, 4 1, Re 4 
1, and 8, 4 1) is a homogeneous azimuthal flow only to leading order. The resulting 
tensile elastic hoop stress coupled with the curvature of the closed circular streamlines 
drives a steady weak secondary recirculation superposed on this azimuthal motion that 
is inwardly directed near the rotating cone with magnitude O(Deo~o)2 .  This elastic 
stress-driven steady secondary flow is not incorporated in our analysis and may lead 
to the negative or inward motion of the unsteady secondary flow that develops 
throughout the fluid sample after onset of instability. By contrast, for creeping motion 
between coaxial parallel plates, the base solution of purely azimuthal shear flow is 
exact. However, the flow is non-homogeneous and the elastic stresses vary in the radial 
direction. This results in a critical radius RT below which all disturbances are damped 
out. Inward-travelling modes excited at this radial location will therefore translate to 
smaller radii and immediately decay; it is therefore not surprising that the finite- 
amplitude unstable modes observed experimentally are positive-angle, outward- 
travelling Archimedean spirals. 

Our experimental observations in the cone-and-plate rheometer show that the 
outward-winding or negative angle (rn < 0) logarithmic spirals travel radially inward 
and that the wave speed of the spiral vortices scales linearly with the radius r^ as 
described by equation (8). The sign of the imaginary part of the growth rate Im(cT) 
independently determined from the stability analysis also predicts that negative-angle 
spirals travel radially inwards (i.e. c5 < 0). Interestingly, the axisymmetric (rn = 0) 
disturbance also is found to be an inward-travelling mode in the cone-and-plate 
geometry. By contrast, our analysis for the parallel-plate geometry predicted that the 
axisymmetric mode travels radially outwards. 

Throughout this work we have emphasized that the spatial structures of the elastic 
instabilities presented in this paper for the viscoelastic flow between a cone and a plate 
are very different from those predicted by Oztekin & Brown (1993) and BOBM for the 
flow between coaxial parallel rotating disks. However, the numerous similarities 
between the base torsional motion in two geometries and the form of the disturbance 
equations (after coordinate transformation in the cone-and-plate or radial localization 
in the parallel-plate configuration) suggest that these two spiral instabilities should be 
closely related. In the limit 8, --f O", the radial variation in the local gap between the 
cone and the plate h( f )  = ?O0 is very weak. If we consider localized displacements S? 
about an arbitrary radial position such as R ,  then we can linearize the logarithmic 
radial coordinate transformation (equation (2)) as 6 = In( 1 + SF/R,) z Si/Ro. Sub- 
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FIGURE. 20. Connection between elastic instabilities in torsional motion between parallel rotating 
disks (Oztekin & Brown 1993) and between a cone and a plate. (a) The critical wavenumber (app)  of 
axisymmetric disturbances in the parallel plate (-), and the critical modified wavenumber a5 8, in 
the cone and plate (---). (b)  The critical geometric parameter RX,, for onset of axisymmetric 
disturbances in each geometry; -, parallel plate; 0, cone and plate. All calculations are for the 
Oldroyd-B model with ,8 = 0.59. 

stituting thislinearized transformcoordinate into the disturbance kinematics described by 
(3), and defining the local gap between the two fixtures as ROOo = H ,  leads to 

exp[ias(+im$+at] x exp[i(asOo)(6t/H)+im$+d]. (28) 
By identifying the modified spatial wavenumber appearing in (28) as a500 = app, it 

becomes clear that this normal mode decomposition is equivalent to the form of the 
Archimedean spiral disturbances considered in BOBM. In the limit of small cone 
angles (i.e. R* = l/O,+co) we expect the dimensionless product a500 constructed from 
the spatial wavenumber of the cone-and-plate disturbance to approach the di- 
mensionless radial wavenumber aPp of the parallel-plate disturbance that can be 
obtained in the limit R* = R/H+co by linearizing the radial variations in the 
corresponding disturbance equations (Oztekin & Brown 1993). To verify this 
interconnection between the two elastic instabilities, we show in figure 20(a) the 
appropriate critical wavenumbers for the onset of axisymmetric instabilities in each 
geometry as a function of Deborah number for the Oldroyd-B model with p = 0.59. 
For this quasi-linear model the critical value of the geometric parameter R* in each 
geometry becomes infinite in the limit as De,+O. Our calculations clearly show that 
although the dimensionless wavenumber at of the cone-and-plate disturbance becomes 
very large for small cone angles (cf. figure 14) the product at@,, approaches the same 
asymptotic value (x 3.1) as the wavenumber app calculated for the parallel-plate 
disturbance in the limit De,+O. A similar comparison could be drawn from the 
predictions of the Chilcott-Rallison model ; however, for each geometric configuration 
the curves would terminate at a non-zero value of the Deborah number, corresponding 
to the appropriate value of Deocrit below which all disturbances of spiral form are 
restabilized by shear thinning in the viscoelastic hoop stress. 

Another connection between the linear stability predictions for the onset of elastic 
spiral instabilities in parallel-plate and cone-and-plate motions may be made by 
comparing the stability diagrams for the two geometries. The critical onset conditions 
for the axisymmetric disturbance modes for each geometry are plotted in figure 20(b) 
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in terms of the appropriate critical geometric parameter, i.e. the critical radial location 
R* = ?crit /H in the parallel-plate geometry and the critical cone angle R* = 1 /80erit for 
the cone-and-plate geometry. Given the results in figure 20(a), it is not surprising that 
the predictions of R* for both geometries are similar to one part in 1000 as De,+O. 
However, it is very interesting that the values of R* remain very close for Deborah 
numbers as large as De, = 3 .  These results serve to justify two critical approximations 
made in the cone-and-plate and parallel-plate analyses. One is the approximation 
applied to find the solution of viscometric base flow between a cone and a plate. The 
results shown here indicate that the onset of instability is not particularly sensitive to 
the approximate form of the solution for the purely azimuthal base flow. At De, = 3 
the critical cone angle becomes as large as 15"-20"; however, the corresponding value 
of R* = 1/8, z 3 remains close to the value of R* = Fcrit/H for flow between parallel 
plates, in which the kinematics of the inertialess base flow are exact. Secondly, figure 
20(b) shows that the critical conditions for onset of spiral instabilities in the parallel- 
plate configuration are insensitive to the approximation of localizing the disturbances. 
As we have described in section $4, disturbances in the cone-and-plate geometry are 
not localized to any particular region, in contrast with our earlier analysis for flow 
between parallel plates. The very close agreement in the values of the critical geometric 
parameters R* for the onset of both instabilities over a wide range of Deborah numbers 
serves to justify the localized disturbance assumption first applied by Oztekin & 
Brown (1993). 

Although the form of the instabilities is different in the cone-and-plate and parallel- 
plate geometries, the spatial structure of the disturbance velocities and the nature of the 
neutral stability diagrams are very similar. Hence, we expect that the physical 
mechanism responsible for the instabilities in both cases also is similar. The common 
feature of the viscoelastic instabilities now extensively documented for Taylor-Couette 
and Taylor-Dean flows, for torsional motion between parallel coaxial rotating disks, 
and for flow in a cone-and-plate rheometer is the coupling between the streamline 
curvature and the elastic normal stresses in the fluid. A detailed energy analysis and 
micromechanical discussion of the instability mechanism for axisymmetric and non- 
axisymmetric disturbances in the Taylor-Couette flow of an Oldroyd-B fluid has been 
given by Joo & Shaqfeh (1992, 1994) and a similar energy analysis for the nonlinear 
Chilcott-Rallison model was first given in BOBM. We therefore do not repeat such 
calculations in detail here ; however, the physical mechanisms associated with onset of 
the instability can be simply understood by considering interactions between 
infinitesimal fluctuations in the velocity gradient in the 8-direction and the base-state 
polymeric stresses which couple through the curved streamlines of the base flow to 
create a perturbation in the hoop stress S$$ that reinforces the secondary flow. 

For simplicity we consider an axisymmetric disturbance velocity field which results 
in a non-zero meridional velocity gradient au,/a8 that stretches the dumbbell in the 8- 
direction. Such disturbances create a perturbation to the meridional normal stress 
component So, which satisfies 

where H( ) is the operator defined in 20(g). 
The velocity gradient au,,/a8 and shear stress So$, of the steady base flow couple 

with the meridional disturbances in S,, and au,/a8 to produce a perturbation in the 
shear stress given by 

H(S,,) = 2pp au,/af% (29) 
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Additional coupling between this perturbation to the shear stress So, and the base-state 
velocity gradient au,,/aO further deforms the dumbbell in the azimuthal $-direction 
which produces an additional hoop stress S++: 

This additional elastic hoop stress reinforces the velocity field of the perturbation 
because of the curvature of the streamlines. The dominant terms in the transformed 6- 
and 8-momentum equations, (19), for the disturbance motion are independent of radial 
position and given by 

-s,+-appla~+pv2uT = 0, -ap/a0+pv2U, = Q. (32a, b) 

The disturbance path followed here is very similar to that of the parallel-plate case 
and computations of the mechanical energy balance for this creeping flow are 
analogous to those discussed by Joo & Shaqfeh (1994) for the viscoelastic Taylor-Dean 
instability. Such calculations show similar couplings between the steady base flow and 
the disturbances, plus the presence of an additional damping term arising from the 
finite extensibility of the dumbbells which, in this geometry, is independent of radial 
position but becomes increasingly important at higher shear rates. The only unique 
features in the cone-and-plate geometry are the lack of radial variation in the rate of 
disturbance energy production and the absence of terms in the energy balance 
equations involving gradients of the elastic stress field resulting from the purely 
azimuthal base flow because this motion is spatially homogeneous, unlike Taylor-Dean 
flow or torsional motion between parallel plates. 

The results presented in this paper have clearly shown that the elastic flow 
instabilities responsible for apparent anti-thixotropic transitions observed in cone-and- 
plate rheometers are similar to those in the parallel-plate rheometer. These flow 
instabilities have very important consequences in correctly interpreting rheological 
measurements performed in highly elastic liquids. For a given cone angle, the 
disturbances take the form of travelling logarithmic spiral vortices and render the 
azimuthal steady-state viscometric motion unstable beyond a critical value of the 
Deborah number. These elastic instabilities occur even in creeping flows using conical 
fixtures with cone angles as small as 8, x 4" which are commonly employed in 
commercial rheometers. The restabilization of the base flow at higher shear rates (or 
equivalently smaller cone angles) suggests that even shallower cones should be used to 
avoid erroneous viscometric measurements. 
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